Home || Publications || Research || Opportunities || Group

Modelling of the coupling of fracture and mass transport in geomaterials

Discrete meso-scopic analysis of mass-transport in a heterogeneous material.

Hydraulic fracture: Thick-walled cylinder subject to internal fluid pressure.

Micro cracking induced conductivity.

We aim to model coupled processes of fracture and mass transport in geomaterials using discrete approaches. Fracture influences the permeability and rate of ingress of substances in geomaterials, which can have negative effects on durability of these materials. Furthermore, fluid pressure can initiate and propagate fracture. We aim to improve the understanding of the relation between cracking and fluid transport by modelling the material response at multiple scales.

We have developed two-dimensional coupled discrete approaches based on dual Delaunay and Voronoi tessellations for the coupling of fracture and mass transport, which were presented in Grassl (2008) and Grassl (2009). These two-dimensional approaches were applied later to the modelling of hydraulic fracturing in Grassl et al. (2015) and corrosion induced cracking in Grassl et al. (2017).

In 2009, we extended the dual two-dimensional approaches to three dimensions. The first study demonstrating the concept of the three-dimensional model was presented in Grassl and Bolander (2009). A longer article presenting the details of the dual three-dimensional discrete modelling approach for fracture was presented in Grassl and Bolander (2016).

In a recent EPSRC project (SAFE barriers), the three-dimensional dual Delaunay and Voronoi approach was extended to a hydro-mechanical pore-scale model, which was used for the modelling of wetting of bentonite in Athanasiadis et al. (2017).

See Publications or contact me for more information.

Last updated by Peter Grassl