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The present paper deals with a lattice-cell approach to fracture modeling. The struts in the lattice form triangular
cells, which resist volume change and thus introduce a coupling of the constitutive responses of the struts. With
this approach, the full range of Poisson’s ratio of an elastic solid can be modeled. Poisson’s ratio is controlled by
the ratio of the material stiffness of the struts and the cells. The relationship of the parameters of the lattice-cell
model to the parameters of the Hooke’s law of the elastic solid in plane strain is derived using as an example
an equilateral triangle. The validity of these derivations is supported by numerical simulation of an elastic solid
in uniaxial tension. Furthermore, the constitutive response of the strut is extended to take into account the
evolution of damage, which allows the simulation of fracture. The fracture process of a solid in plane strain
subjected to uniaxial tension is studied. Both the positions of the vertices and the material strengths of the struts
are assumed to be random. The results show that the lattice-cell model is able to describe the full range of
Poisson’s ratio of an elastic solid and still remains suitable for modeling fracture. So far, the model is limited to
plane strain and tensile fracture.

1 INTRODUCTION

Lattice and particle models are known to be suit-
able for modeling fracture of materials such as con-
crete, rock, ceramics and ice (Bažant et al. (1990),
Schlangen and van Mier (1992), Jirásek and Bažant
(1995a), Jirásek and Bažant (1995b)). However, for
lattice models composed of struts or particle mod-
els transmitting axial forces only it is known that
Poisson’s ratio of an elastic solid approaches, in the
limit of an infinite number of elements (particles),
the value of 1/4. This restriction can be overcome by
introducing shear stiffnesses, either by replacing the
struts by beams or, in the case of particle systems,
by adding shear springs between particles. This ap-
proach was applied by Zubelewicz and Bažant (1987)
and Morikawa et al. (1993) and investigated in greater
detail by Griffiths and Mustoe (2001). The addition of
shear stiffness allows it to model Poisson’s ratios less
than 1/4. Furthermore, the addition of shear springs
in particle models allows it to simulate realistically
the compressive failure of cohesive-frictional mate-
rials such as concrete, as it was shown by Cusatis
et al. (2003a) and Cusatis et al. (2003b). Nevertheless,
Poisson’s ratios greater than 1/4 cannot be modeled
by the afore mentioned approaches.

The present paper presents a lattice-cell model,
which allows one to overcome the restriction on Pois-
son’s ratio while preserving the favorable properties
of the classic lattice for simulating tensile fracture.
The struts in the present model form triangular cells,
which resist volume change and thereby introduce a
coupling of the constitutive response of the struts.
Poisson’s ratio can be controlled by the ratios of the
stiffnesses of the struts and the cells. The model is
suitable for implementation in standard finite element
programs, since the cells can be modeled by constant
strain triangular elements and the trusses by ordinary
truss elements. Tensile fracture is modeled by a reduc-
tion of the stiffness of the struts driven by the strain.
The stiffness of the cells is kept proportional to the
minimum stiffness of the surrounding trusses.

Firstly, the relationship of the material parame-
ters of the lattice-cell model and the parameter’s of
Hooke’s law of an elastic solid in plane strain are de-
rived for the example of an equilateral triangle. The
validity of these derivations is supported by numeri-
cal simulations of an elastic solid in uniaxial tension.
Secondly, the elastic constitutive model of the trusses
is extended to a damage model, which is used to sim-
ulate tensile fracture.
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Figure 1: Equilateral triangle composed of three struts
and one cell. (b) A strut.

2 RELATIONSHIP TO ELASTIC CONTINUUM
In this section, the elastic response of a structure made
of three trusses and one cell in the form of an equilat-
eral triangle, shown in Figure 1a, is compared to the
elastic continuum in plane strain. The force f in the
strut is related to the normal stress σ as

f = σAt (1)

where At is the cross-sectional area of the strut. The
normal strain in the lattice strut is defined as

ε =
∆u

L
(2)

where ∆u is the relative displacement in the longitu-
dinal direction and L is the length of the strut. Fur-
thermore, an elastic stress-strain relation of the form

σ = Etε (3)

is assumed, where Et is the elastic modulus of the ma-
terial of the strut. The energy stored in a single strut,
shown in Figure 1b, is defined as

Wt =
1

2
f∆u =

1

2
EtεAtL (4)

Consequently, the energy of a triangle formed by
three struts, shown in Figure 1a, results to

W = Wt1 +Wt2 +Wt3 =
1
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AtLEt
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)

(5)

where the subscripts 1,2,3 refer to the respective
struts. The energy in Equation 5 is transformed to
strain energy by dividing it by the area of the cell Ac.
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where it is assumed that At = Ac/(3L).
So far, the cell, which is formed by the struts, has

not yet been considered. Since the cell resists volume
change, an additional energy term is added and so the
total energy results in

V = Vt + Vc =
1
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where εV is the volumetric strain in the cell, which
is expressed in the form of normal components of the
continuum strain as εV = εxx + εyy + εzz (with εzz = 0
in plane strain). The parameter m is a model param-
eter, which relates the stiffness of the cell to the stiff-
ness of the struts and is used to control the value of
Poisson’s ratio.

The normal strain in the direction of a strut, as
shown in Figure 1b, is related to the Cartesian strain
components as

ε(θ) =εxx cos2 (θ) + εyy sin2 (θ)

+ γxy cos (θ) sin (θ)
(8)

where θ is the angle that the normal direction of the
strut forms with the x-axis of the Cartesian coordinate
system. Thus, the strain energy in Equation 7 can be
expressed by the Cartesian strain components as

V =
1
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(9)

Here, γxy is the engineering shear strain, which is de-
fined as γxy = 2εxy. The Cartesian stress components
are defined as

σxx =
∂V

∂εxx
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,

σyy =
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and
τxy =

∂V

∂γxy

=
1

8
Et (12)



where σxx and σyy are the normal stress components
and τxy = σxy is the shear stress.

Hooke’s law for the elastic continuum, on the other
hand, defines the stresses by means of the Young’s
modulus E and Poisson’s ratio ν as

σxx =
E (1− ν)

(1 + ν)(1− 2ν)
εxx

+
Eν

(1 + ν)(1− 2ν)
εyy

(13)

,

σyy =
Eν

(1 + ν)(1− 2ν)
εxx

+
E (1− ν)

(1 + ν)(1− 2ν)
εyy

(14)

and
τxy =

E

2(1 + ν)
γxy (15)

The relation of the parameters of the lattice-cell
model (Et, m) to the parameters of Hooke’s law of
the elastic continuum (E,ν) is determined by com-
parison of the coefficients of εxx and γxy in Equa-
tions 10 and 13, and 12 and 15, respectively. This
leads to the equalities

E (1− ν)

(1 + ν) (1− 2ν)
=

3

8
Et + mEt (16)

and
E

2 (1 + ν)
=

1

8
Et (17)

Thus, the expressions for ν and E result in

ν =
1 + 8m

4 + 16m
(18)

and
E = Et

5 + 24m

16 + 64m
(19)

Accordingly, m and Et can be expressed by means of
E and ν as follows:

m =
4ν − 1

8− 16ν
(20)

and
Et =

4E

1 + ν
(21)

For the upper limit of Poisson’s ratio (ν = 1/2) the
parameters of the lattice-cell model result in

lim
ν→ 1

2

m = ∞ (22)

and
lim
ν→ 1

2

Et =
8

3
E (23)

For the lower limit (ν = −1), on the other hand, the
parameters are found to be

lim
ν→−1

m = −
5

24
(24)

and
lim

ν→−1

Et = 0 (25)

Furthermore, for the value m = 0, the classic lat-
tice model with Poisson’s ratio of ν = 1/4 is regained.
Consequently, Poisson’s ratio less than 1/4 requires a
negative m. The energy in Equation 7, however, must
be guaranteed to be positive for all values of m. The
condition for a positive strain energy can be deter-
mined by expressing the extra energy term associated
with the volumetric strain of the cell by means of the
strains in the adjacent struts; this gives

εV = εxx + εyy =
2

3
(ε1 + ε2 + ε3) (26)

Thus, the strain energy in Equation 7 can be written
as
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(27)

The strain energy is guaranteed to be positive if the
eigenvalues of
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(28)

are positive, which results in the condition

m > −
1

4
(29)

This value is less than the lower limit of m in Equa-
tion 24. Thus, the strain energy is guaranteed to be
positive for all possible values of Poisson’s ratio.

As mentioned above, the resistance of the cell to
volume change results in an additional energy term,
which leads to a coupling of the struts, and so the
stress in a strut depends not only on the strain in this
strut, but also on the strains in the neighbors. The
stress in strut 1, for instance, can be determined from
Equation 27;

σ1 =
∂V

∂ε1

=
1

3
Etε1 +

4

9
mEt (ε1 + ε2 + ε3) (30)
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Figure 2: (a) Geometry and loading setup. (b) Mesh.

3 NUMERICAL PREDICTION OF THE ELAS-
TIC PROPERTIES

The theoretical derivations in the preceding Section
are supported by numerical simulations of a solid in
plane strain subjected to uniaxial tension. The geom-
etry and boundary conditions of the specimen studied
are shown in Figure 2a.

The dimensions of the specimen are set to d =
0.1 m and h = 0.3 m. The mesh, which was gener-
ated by means of the program T3D (Rypl (1998)),
is shown in Figure 2b. Each triangle represents three
trusses and one cell. The edge length of the triangles
is approximately 7 mm.

The parameters Et and m of the lattice model
were varied to simulate different Poisson’s ratios ν
at a constant Young’s modulus E = 1 using Equa-
tions 20 and 21. Poisson’s ratio ν was determined
by means of the average deformations in x-and y-
directions, ∆ux and ∆uy, at the boundary of the spec-
imen as

νnum =
∆uxh

∆uxh−∆uyd
(31)

A comparison of the theoretical and numerical Pois-
son’s ratio is shown in Figure 3. It is seen that
the agreement of theory and numerical simulation is
good. The deviations for small Poisson’s ratios (ν =
−0.5 and −0.99) might be due to the irregularity of
the mesh used.

4 EXTENSION TO DAMAGE MECHANICS
To model fracture of concrete subjected to tensile
loading, the elastic stress-strain relation of the struts
was extended to an elasto-damage stress-strain rela-
tion of the form

σ = (1− ω)Etε (32)
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Figure 3: Comparison of the numerical and theoretical
values of Poisson’s ratio of the elastic solid in plane
strain.

The damage variable ω is related to the history vari-
able κ as

ω =







0 if κ ≤ ε0

1−
ε0

κ
exp

(

−
κ− ε0

εf

)

if κ ≥ ε0

(33)

where ε0 = ft/Et is the strain at peak stress and εf is
a parameter that controls the initial slope of the expo-
nential softening curve. The parameter ft is the tensile
strength of the strut. The history variable κ is defined
by the loading function

f (ε, κ) = 〈ε〉 − κ (34)

along with the loading and unloading conditions

f (ε, κ) ≤ 0, κ̇ ≥ 0, κ̇ f (ε, κ) = 0 (35)

The symbol 〈...〉 in Equation 34 is the positive-part
operator, defined as 〈x〉 = max(x,0).

To ensure that the total energy stored in the ma-
terial remains positive during damage evolution, the
secant stiffness of the cell is determined by means of
the maximum damage variable of the adjacent struts.
Thus, the energy of the equilateral triangle (Figure 1a)
for the damaged state results in

V =
1

6
Et

(

(1− ω1) ε2

1
+ (1− ω2) ε2

2
+ (1− ω3)ε2

3

)

+
1

2
mEt (1− ωmax) ε2

V

(36)

where ω1, ω2, ω3 are the damage variables of the three
trusses and ωmax is the maximum of those values.

5 PLAIN CONCRETE SUBJECTED TO DIRECT
TENSION

The model is applied to the simulation of plain con-
crete subjected to quasi-static tensile loading in plane



Figure 4: Geometry and loading setup.

(a) (b)

Figure 5: (a) Random distribution of vertices. (b)
Mesh.

strain conditions. The geometry and the loading setup
are shown in Figure 4. The rotation and the lateral ex-
pansion of the ends of the specimen are not restrained.
The dimensions are chosen again to be h = 0.3 m
and d = 0.1 m. It is known that the fracture pat-
terns obtained with lattice (or particle) models are of-
ten strongly influenced by the structure of the mesh
(Jirásek and Bažant (1995b)). Therefore, the vertices
of the mesh for the fracture simulation are placed ran-
domly, as shown in Figure 5a.

To avoid too small elements, a minimum distance
of the vertices of dmin = 5 mm was enforced. Addi-
tionally, vertices were placed at the boundary of the
specimen with a regular spacing of dmin. The mesh
generation (see Figure 5b) was based on a Delaunay
triangulation using the program Triangle (Shewchuk
(1996)).
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Figure 6: Load-displacement curve of the the concrete
specimen in plane strain subjected to tension.

The elastic material parameters of the lattice-cell
model are chosen to Et = 66.67 GPa and m =
−0.04167, which corresponds, according to Equa-
tions 18 and 19, to E = 20 GPa and ν = 0.2. Fur-
thermore, the parameter that controls the slope of the
softening curve is chosen as εf = 0.01. Finally, the pa-
rameter ε0 was chosen to be randomly distributed ac-
cording to the Weibull cumulative distribution func-
tion

Pw = 1− exp

[

−

(

ε0

s1

)k
]

(37)

where the Weibull modulus is set as k = 6 and the
scaling factor to s1 = 0.00018, which corresponds to
a peak stress of the stress-strain relation of the strut of
ft = Etε0 = 12 MPa.

The load-displacement curve is shown in Figure 6.
Furthermore, the damage pattern is presented in Fig-
ure 7 for three stages (marked in Figure 6). The struts,
in which the damage variable increases, are marked
by black lines and those in which the nonzero dam-
age variable remains constant by gray lines.

The simulation gives a realistic description of the
response of concrete under tensile loading with regard
to both the load-displacement curve and the crack pat-
terns obtained.

6 CONCLUSIONS
A lattice cell model, in which the lattice struts form
triangular cells resisting volume change is explored.
The model is capable of predicting the full range of
Poisson’s ratio of an elastic solid in plane strain, as
demonstrated both analytically and numerically. Fur-
thermore, the model yields the typical behavior of
quasibrittle materials under tensile loading. It is in-
tended to extend this modeling approach to three di-
mensions and to apply it to Monte Carlo simulations
of concrete structures.



Figure 7: Damage in the trusses for three stages of
analysis (marked in Figure 6). Lattice struts with in-
creasing damage variable are marked by black lines
and those with a constant nonzero damage variable
by gray lines.
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