Hydraulic fracture of a porous thick-walled hollow sphere

Peter Grassl University of Glasgow, UK

Domenico Gallipoli University of Pau, France

Milan Jirásek

Czech Technical University, Czech Republic

Background

Hydraulic fracture processes in permeable geomaterials with stationary fluid flow.

Aim

Study the importance of Biot coefficient for hydraulic fracture processes.

Methodology

Investigate fracture of permeable thick-walled hollow sphere subjected to inner fluid pressure.

Outline

Assumptions and notations

Fluid driven loading

Elastic response

Nonlinear fracture response

Size effect

Assumptions and notations

- Spherical symmetry
- Stationary flow
- Constant viscosity and permeability
- Small displacements
- Influence of gravity neglected

 $P_{\rm fi}$ tension positive

Fluid driven loading

with dimensionless variables

 $\bar{P}_{\rm fi} = P_{\rm fi}/E$ $\bar{P}_{\rm f} = P_{\rm f}/E$ $\bar{r} = r/r_{\rm i}$ $\bar{r}_{\rm o} = r_{\rm o}/r_{\rm i}$

Pressure versus radius

Elastic response

Equilibrium condition

$$\frac{d\sigma_{\rm r}}{dr} + 2\frac{\sigma_{\rm r} - \sigma_{\rm t}}{r} = 0$$

Stress definition

$$\sigma_{\rm r} = \sigma_{\rm r}^{\rm m} + bP_{\rm f}$$

$$\sigma_{\rm t} = \sigma_{\rm t}^{\rm m} + bP_{\rm f}$$

Constitutive laws

$$\varepsilon_{\rm r} = \frac{1}{E} \left(\sigma_{\rm r}^{\rm m} - 2\nu \sigma_{\rm t}^{\rm m} \right)$$
$$\varepsilon_{\rm t} = \frac{1}{E} \left((1 - \nu) \sigma_{\rm t}^{\rm m} - \nu \sigma_{\rm r}^{\rm m} \right)$$

$$\sigma_{\theta} = \sigma_{\phi} = \sigma_{\rm t}$$

Kinematics

$$\varepsilon_{\rm r} = \frac{du}{dr} \quad \varepsilon_{\rm t} = \frac{u}{r}$$

Timoshenko and Goodier (1970), Coussy (2010)

Dimensionless ODE

$$\frac{d^2\bar{u}}{d\bar{r}^2} + 2\frac{d\bar{u}}{d\bar{r}}\frac{1}{\bar{r}} - 2\frac{\bar{u}}{\bar{r}^2} + b\bar{P}_{\rm fi}\frac{(1+\nu)\left(1-2\nu\right)}{(1-\nu)}\frac{\bar{r}_{\rm o}}{1-\bar{r}_{\rm o}}\frac{1}{\bar{r}^2} = 0$$

with dimensionless radial displacement

$$\bar{u} = \frac{u}{r_{\rm i}}$$

Solve analytically and numerically for boundary conditions:

$$ar{\sigma}_{
m r}^{
m m}=(1-b)ar{P}_{
m fi}$$
 at $ar{r}=ar{r}_{
m i}$

 $ar{\sigma}_{
m r}^{
m m}=0$ at $ar{r}=ar{r}_{
m o}$

Radial displacement versus radius

Radial stress versus radius

Tangential stress versus radius

Nonlinear fracture response

Nonlinear fracture mechanics

Nonlinear fracture mechanics

$$ar{\sigma}_{
m t}^{
m m} = arepsilon_0 {
m exp} \left(-rac{arepsilon_{
m t}^{
m c}}{arepsilon_{
m f}}
ight) \quad {
m with} \quad arepsilon_0 = f_{
m t}/E$$

 $\varepsilon_{\rm f} = w_{\rm f} \frac{l_{\rm c}}{2S_{\rm c}} = w_{\rm f} \frac{\alpha}{r} = \bar{w}_{\rm f} \frac{\alpha}{\bar{r}} \qquad \text{with} \quad \bar{w}_{\rm f} = \frac{w_{\rm f}}{r_{\rm i}}$

Constitutive law for cracking

Nonlinear ODE

Numerical solution:

- Finite difference scheme
- Shooting method
- Newton method
- Outer displacement control

Pressure versus inner displacement

Tangential effective stress versus radius

Tangential stress versus radius

Size effect

Size effect

Investigate effect of inner radius $r_{\rm i}$ on strength for constant $\bar{r}_{\rm o}=r_{\rm o}/r_{\rm i}$

Dimensionless input affected by change of r_i :

$$ar{w_{\mathrm{f}}} = rac{w_{\mathrm{f}}}{r_{\mathrm{i}}}$$
 with $w_{\mathrm{f}} = \mathrm{const}$

Equilibrium

$$\bar{P}_{\rm fi} = -2\int_1^{\bar{r}_{\rm o}} (\bar{\sigma}_{\rm t}^{\rm m} + b\bar{P}_{\rm f})\,\bar{r}\,\mathrm{d}\bar{r}$$

Limits

Plastic limit:

$$\frac{r_{\rm i} \to 0 \implies \bar{w}_{\rm f} = \frac{w_{\rm f}}{r_{\rm i}} \to \infty}{\frac{\bar{P}_{\rm fi, pl}}{(\bar{r}_{\rm o}^2 - 1)}} = -\frac{\varepsilon_0}{1 + b(\bar{r}_{\rm o} - 1)}}$$

 \bar{P}_{fi}

 $ar{\sigma}_{ ext{t}}^{ ext{m}}$

=

Onset of cracking:

$$r_{\rm i} \to \infty \ \Rightarrow \ \bar{w}_{\rm f} = \frac{w_{\rm f}}{r_{\rm i}} \to 0$$

$$\frac{\bar{P}_{\rm fi,el}}{\bar{r}_{\rm o}^2 - 1} = -\frac{1}{\bar{r}_{\rm o}^2 - 1} \frac{2\varepsilon_0}{\left(1 - b\frac{1 - 2\nu}{1 - \nu}\right)\frac{\bar{r}_{\rm o}^3 + 2}{\bar{r}_{\rm o}^3 - 1} + b\frac{1}{1 - \nu}\frac{\bar{r}_{\rm o} - 2\nu}{\bar{r}_{\rm o} - 1}}$$

Size effect for $\bar{r}_{\rm o} = 7.25$

Size effect for $\bar{r}_{o} = 3.125$

Size effect for $\bar{r}_{o} = 14.5$

Conclusions

- Model for fluid driven fracture in a thickwalled sphere based on nonlinear fracture mechanics
- Strong effect of Biot-coefficient on strength
- Strong effect of size on strength, which decreases with increasing Biot-coefficient and decreasing thickness of the sphere.