Hydraulic fracture of a permeable thick-walled hollow sphere

Peter Grassl
University of Glasgow, UK

Domenico Gallipoli
University of Pau, France

Milan Jirásek
Czech Technical University, Czech Republic

Background

Hydraulic fracture processes in permeable geomaterials (concrete, rock, stiff soils) with stationary fluid flow.

Aim

Study the importance of Biot coefficient for hydraulic fracture processes.

Methodology

Investigate initial fracture (hardening) of permeable thick-walled hollow sphere subjected to inner fluid pressure.

Assumptions and notations

Assumptions and notations

- Spherical symmetry
- Stationary flow
- Constant viscosity and permeability
- Fluid is incompressible
- Small displacements
- Influence of gravity neglected

Fluid driven loading

Fluid driven loading

$$
\begin{aligned}
& \dot{V}=\dot{V}_{\mathrm{i}}+Q \quad \dot{V}_{\mathrm{i}}=\dot{u}_{\mathrm{i}} 4 \pi r_{\mathrm{i}}^{2} \\
& q=\frac{Q}{4 \pi r^{2}} \quad q=\frac{\kappa}{\mu} \frac{d P_{\mathrm{f}}}{d r} \\
& \text { Pressure distribution }
\end{aligned}
$$

$$
\bar{P}_{\mathrm{f}}=\bar{P}_{\mathrm{ff}} \frac{\bar{r}-\bar{r}_{\mathrm{o}}}{\bar{r}\left(1-\bar{r}_{\mathrm{o}}\right)}
$$

with dimensionless variables

$$
\bar{P}_{\mathrm{fi}}=P_{\mathrm{fi}} / E \quad \bar{P}_{\mathrm{f}}=P_{\mathrm{f}} / E \quad \bar{r}=r / r_{\mathrm{i}} \quad \bar{r}_{\mathrm{o}}=r_{\mathrm{o}} / r_{\mathrm{i}}
$$

Pressure versus radius

Elastic response

Equilibrium condition

 $\frac{d \sigma_{\mathrm{r}}}{d r}+2 \frac{\sigma_{\mathrm{r}}-\sigma_{\mathrm{t}}}{r}=0$Stress definition

$$
\begin{aligned}
& \sigma_{\mathrm{r}}=\sigma_{\mathrm{r}}^{\mathrm{m}}+b P_{\mathrm{f}} \\
& \sigma_{\mathrm{t}}=\sigma_{\mathrm{t}}^{\mathrm{m}}+b P_{\mathrm{f}}
\end{aligned}
$$

Constitutive laws

$$
\begin{aligned}
& \varepsilon_{\mathrm{r}}=\frac{1}{E}\left(\sigma_{\mathrm{r}}^{\mathrm{m}}-2 \nu \sigma_{\mathrm{t}}^{\mathrm{m}}\right) \\
& \varepsilon_{\mathrm{t}}=\frac{1}{E}\left((1-\nu) \sigma_{\mathrm{t}}^{\mathrm{m}}-\nu \sigma_{\mathrm{r}}^{\mathrm{m}}\right)
\end{aligned}
$$

Kinematics
$\varepsilon_{\mathrm{r}}=\frac{d u}{d r} \quad \varepsilon_{\mathrm{t}}=\frac{u}{r}$

Dimensionless ODE
$\frac{d^{2} \bar{u}}{d \bar{r}^{2}}+2 \frac{d \bar{u}}{d \bar{r}} \frac{1}{\bar{r}}-2 \frac{\bar{u}}{\bar{r}^{2}}+b \overline{\mathrm{P}}_{\mathrm{f}} \frac{(1+\nu)(1-2 \nu)}{(1-\nu)} \frac{\bar{r}_{\mathrm{o}}}{1-\bar{r}_{\mathrm{o}}} \frac{1}{\bar{r}^{2}}=0$
with dimensionless radial displacement
$\bar{u}=\frac{u}{r_{\mathrm{i}}}$
Solve analytically and numerically for boundary conditions:

$$
\begin{aligned}
& \bar{\sigma}_{\mathrm{r}}^{\mathrm{m}}=(1-b) \bar{P}_{\mathrm{f}} \text { at } \bar{r}=\bar{r}_{\mathrm{i}} \\
& \bar{\sigma}_{\mathrm{r}}^{\mathrm{m}}=0 \text { at } \bar{r}=\bar{r}_{\mathrm{o}}
\end{aligned}
$$

Radial displacement versus radius

$\nu=0.2$ and $\bar{r}_{\mathrm{o}}=7.25$
\bar{r}

Nonlinear fracture response

Nonlinear fracture mechanics

Possible fracture pattern

$$
\begin{aligned}
& \bar{\sigma}_{\mathrm{t}}^{\mathrm{m}}=\varepsilon_{0} \exp \left(-\frac{\varepsilon_{\mathrm{t}}^{\mathrm{c}}}{\varepsilon_{\mathrm{f}}}\right) \quad \text { with } \quad \varepsilon_{0}=f_{\mathrm{t}} / E \\
& \varepsilon_{\mathrm{f}}=w_{\mathrm{f}} \frac{l_{\mathrm{c}}}{2 S_{\mathrm{c}}}=w_{\mathrm{f}} \frac{\alpha}{r}=\bar{w}_{\mathrm{f}} \frac{\alpha}{\bar{r}} \quad \text { with } \quad \bar{w}_{\mathrm{f}}=\frac{w_{\mathrm{f}}}{r_{\mathrm{i}}}
\end{aligned}
$$

Constitutive law for cracking

Nonlinear ODE

$$
\begin{aligned}
& \frac{d^{2} \bar{u}}{d \bar{r}^{2}}+2 \frac{d \bar{u}}{d \bar{r}} \frac{1}{\bar{r}}-2 \frac{\bar{u}}{\bar{r}^{2}}-\frac{2 \nu}{1-\nu} \frac{d \varepsilon_{\mathrm{t}}^{\mathrm{c}}}{d \bar{r}}+\frac{2(1-2 \nu)}{1-\nu} \frac{\varepsilon_{\mathrm{t}}^{\mathrm{c}}}{\bar{r}}+ \\
& +b \frac{P_{\mathrm{fi}}}{E} \frac{(1+\nu)(1-2 \nu)}{(1-\nu)} \frac{\bar{r}_{\mathrm{o}}}{1-\bar{r}_{\mathrm{o}}} \frac{1}{\bar{r}^{2}}=0
\end{aligned}
$$

Equilibrium:

$\bar{P}_{\mathrm{fi}}=-2 \int_{1}^{\bar{r}_{\mathrm{o}}}\left(\bar{\sigma}_{\mathrm{t}}^{\mathrm{m}}+b \bar{P}_{\mathrm{f}}\right) \bar{r} \mathrm{~d} \bar{r}$
Show $\frac{\bar{P}_{\mathrm{fi}}}{\bar{r}_{\mathrm{o}}^{2}-1}$ versus \bar{u}_{i}

Pressure versus inner displacement

$\nu=0.2, \bar{r}_{\mathrm{o}}=7.25$ and $\alpha \bar{w}_{\mathrm{f}}=0.01$

Tangential effective stress versus radius

Size effect

Size effect

Investigate effect of inner radius r_{i} on strength for constant $\bar{r}_{\mathrm{o}}=r_{\mathrm{o}} / r_{\mathrm{i}}$

Dimensionless input affected by change of r_{i} :
$\bar{w}_{\mathrm{f}}=\frac{w_{\mathrm{f}}}{r_{\mathrm{i}}}$ with $w_{\mathrm{f}}=\mathrm{const}$

Limits

Plastic limit:

$r_{\mathrm{i}} \rightarrow 0 \Rightarrow \bar{w}_{\mathrm{f}}=\frac{w_{\mathrm{f}}}{r_{\mathrm{i}}} \rightarrow \infty$
$\frac{\bar{P}_{\mathrm{f}, \mathrm{pl}}}{\left(\bar{r}_{\mathrm{o}}^{2}-1\right)}=-\frac{\varepsilon_{0}}{1+b\left(\bar{r}_{\mathrm{o}}-1\right)}$

Onset of cracking:

$$
\begin{gathered}
r_{\mathrm{i}} \rightarrow \infty \Rightarrow \bar{w}_{\mathrm{f}}=\frac{w_{\mathrm{f}}}{r_{\mathrm{i}}} \rightarrow 0 \\
\frac{\bar{P}_{\mathrm{f}, \mathrm{el}}}{\bar{r}_{\mathrm{o}}^{2}-1}=-\frac{1}{\bar{r}_{\mathrm{o}}^{2}-1} \frac{2 \varepsilon_{0}}{\left(1-b \frac{1-2 \nu}{1-\nu}\right) \frac{\bar{r}_{\mathrm{o}}^{3}+2}{\bar{r}_{\mathrm{o}}^{3}-1}+b \frac{1}{1-\nu} \frac{\bar{r}_{\mathrm{o}}-2 \nu}{\bar{r}_{\mathrm{o}}-1}}
\end{gathered}
$$

Size effect for $\bar{r}_{\mathrm{o}}=7.25$

Conclusions

- Model for fluid driven fracture in a thickwalled sphere based on nonlinear fracture mechanics
- Strong effect of Biot-coefficient on strength
- Strong effect of size on strength, which decreases with increasing Biot-coefficient and decreasing thickness of the sphere.

