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Two classes of nonlocal models for softening materials with nonassociated plastic flow are de-
scribed and their localization properties are analyzed. Models of the first class are based on stan-
dard plasticity and use a hardening-softening law dependent on both local and nonlocal cumulative
plastic strain. Models of the second class are based on combination of plasticity and damage me-
chanics and use a damage evolution law dependent again on local and nonlocal cumulative plastic
strain. Conditions for continuous and discontinuous bifurcations from a uniform state in an infinite
medium are derived, and the evolution of localized plastic zone is illustrated by simple one- and
two-dimensional examples.

1 INTRODUCTION
Concrete is a cohesive-frictional material with a complex behavior. A realistic description of its
constitutive law in the framework of plasticity requires nonassociated flow rules and transition
from hardening to softening under tension or low-confined compression. Both nonassociated flow
and softening are destabilizing phenomena that can lead to the loss of ellipticity of the govern-
ing differential equations. The static boundary value problem then becomes ill-posed and the nu-
merical solution suffers from pathological sensitivity to the discretization parameters, e.g., to the
element size in the finite element method.

Mathematical and numerical problems related to the loss of ellipticity can be overcome by
suitable regularization techniques, e.g., by a nonlocal formulation of the constitutive model. In
nonlocal continua, stress at a point depends not only on the strain and temperature history at that
point but in general on the history of the entire body. Since the influence of remote points should be
very small, in practice it is neglected and the nonlocal interaction is restricted to points at distance
closer than a characteristic length

�
, called the interaction radius.

In nonlocal formulations of the integral type, a certain state variable (usually an internal vari-
able) is replaced by its nonlocal counterpart, obtained by weighted averaging over a neighborhood
of radius

�
of each material point. Such formulations have been well developed for damage mod-

els; see the pioneering paper by Pijaudier-Cabot and Bažant (1987) and the comparative study by
Jirásek (1998). For plasticity models, regularization techniques have often been based on nonlocal
formulations of the differential (gradient) type. Nevertheless, a number of integral-type plasticity
models exist as well; they have been systematically compared and evaluated by Jirásek and Rol-
shoven (2003). It turns out that some of these models have certain drawbacks, e.g., they do not
preclude localization of plastic strain to a set of zero measure, or cannot properly reflect the entire
softening process up to complete failure.

The purpose of this paper is to present two different approaches to integral-type regularization
of nonassociated softening plasticity. Formulations with nonlocal hardening laws are addressed in
Section 2. An alternative approach, applicable to combined plastic-damage models and based on
a nonlocal damage law, is considered in Section 3. For both cases, analysis of bifurcations from
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a uniform state in an unbounded medium is performed and localization conditions are derived.
Illustrative examples in one and two dimensions are presented. The results serve as a basis for the
development of a fully-fledged nonlocal model for failure of concrete.

2 BASIC EQUATIONS OF PLASTICITY AND DAMAGE MECHANICS
To facilitate the discussion of nonlocal models, it is useful to start with a brief review of the basic
equations of plasticity and damage mechanics in the context of the standard “local” continuum. We
consider the flow theory of plasticity with a single smooth yield surface, and a simple isotropic
damage theory with one scalar damage parameter. Attention is restricted to small strain and to
rate-independent behavior.

In the small-strain theory of plasticity, the total strain � is additively decomposed into the elastic
part, ��� , and the plastic part, ��� . The stress � is then linked by the linear elastic law

��� � �
	������ � �
	����������� (1)

to the elastic part of strain. Here, stress and strain are considered as second-order tensors, the
elastic properties are reflected by the fourth-order elastic stiffness tensor

� � , and the colon denotes
the tensorial operation of double contraction. The evolution of the plastic strain is described by the
flow rule�

�����
���� ������ � (2)

in which
�

is a given function specifying the direction of plastic flow, and

��"!$#
is the rate of

the plastic multiplier, to be determined from additional conditions. Dot over a symbol denotes
differentiation with respect to time, but time plays here only the role of a formal parameter that
controls the loading process. Equation (2) and other rate equations to follow could alternatively be
presented in an incremental form, with rates replaced by infinitesimal increments.

Plastic flow can take place only if the stress attains a critical level that may depend on certain
variables % . For simplicity, we consider only isotropic hardening, controlled by a single variable& . The yield function is postulated in the form' ���� & �(�*)+�-,.����/�") Y  & � (3)

where )0�1, is the equivalent stress and ) Y is the yield stress. The yield function is designed such
that states with

'32 #
are elastic, plastic yielding can take place only if

' � #
, and

'34 #
is

impossible. This is expressed by the loading-unloading conditions��5!�# � ' ���� & ��6 # �
�� ' ���� & �7� # (4)

The dependence of the yield stress ) Y on the hardening variable & is called the hardening law; we
write it here in the form

) Y  & �8�*)+97:<;8 & � (5)

where ) 9 is the initial yield stress and ; is the hardening function, vanishing for & � #
. The

hardening variable & is usually related to the evolution of plastic strain, e.g. through the strain-
hardening or work-hardening hypothesis. In general, it can be defined by the rate equation�& �

��>= ���� & � (6)

where parameter
=

may depend on the stress and hardening variable, but often is just a constant
scaling factor.

By an appropriate choice of the expression for equivalent stress )1�-,���?� and of the scaling factor= ����@��� , it is possible to endow the equivalent stress and the hardening variable with the desired
physical meaning. For instance, ) �1, and & can be scaled such that, under uniaxial stress along
axis A , the equivalent stress is equal to the normal stress )@BCB and the hardening variable is (during
monotonic loading) equal to the plastic strain DE� � BCB . The hardening function can then be directly
identified from the uniaxial stress-strain curve. The derivative of the hardening function, FG�
d ;IH d & , is called the plastic modulus. If F 4 #

, the yield stress increases and the material is said
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to be hardening. The opposite case F 2 #
is referred to as softening, and in the limit case F � #

we say that the behavior is perfectly plastic.
The typical format of the stress-strain law used by the scalar damage model reads

���  � ��� � � �
	�� (7)

where � is the damage parameter whose value ranges between 0 in the virgin (undamaged state)
and 1 in the fully damaged state. The growth of the damage parameter must be described by a
suitable evolution equation. It is convenient to use a damage law in the explicit form

� ������ & ��� (8)

where & � is another internal variable, which physically corresponds to the maximum strain level
reached in the previous history of the material point. This is formally described by the loading-
unloading conditions�& � !�# � ' ����I� & � � 6 # �

�& � ' ����>� & � �(� #
(9)

in which the damage loading function
' � is defined as' ����>� & �.�(� D.�1,���0�/� & � (10)

and D �1, is a scalar measure of strain, called the equivalent strain.

3 PLASTICITY WITH NONLOCAL HARDENING LAW
3.1 Nonlocal hardening law
Consider a plastic model with softening, i.e., with decreasing yield stress at increasing cumulative
plastic strain. It is easy to show that, for the local version of the model and in the one-dimensional
case, plastic strain can localize in one point of the interval that represents the one-dimensional
model of a bar under tension or of a semi-infinite layer under shear. Failure then occurs at vanishing
energy dissipation, which is physically inadmissible.

The model response can be regularized by a nonlocal formulation with the yield stress depen-
dent not only on the “local” value of the hardening variable & but also on its nonlocal average�& 
	��8� ���� 
	 ��� � & ���� d � (11)

Here,
� 
	 ����� is a nonlocal weight function that describes the strength of interaction between

points 	 and � and decays with increasing distance between these points. The weight function is
usually nonnegative and normalized such that � � � 
	 ����� d ��� � for all 	���� .

The type of nonlocal formulation considered here consists in replacing the hardening law (5) by

) Y  & � �& �8� )+97:3;��� & � �& � (12)

where ; � is a given function which for & � �& reduces to the original hardening function ; . For
further developments, it is convenient to rewrite (12) in the rate form�

) Y � F��
�& :<F����

��& (13)

in which F � � �I; � H�� & and F �!� �"�>; � H�� �& are the local and nonlocal plastic modulus, resp.
In general, both F#� and F$�!� can be functions of & and

�& . Specific choices of the generalized
hardening function will be discussed in Section 3.4.
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3.2 Rate problem
To get insight into the regularizing effect of the nonlocal formulation, we analyze bifurcations
from a uniform state of an infinite medium. Attention is restricted to special localization modes,
for which planes parallel to a given reference plane remain planar, and the stress and strain rates
depend only on the distance from the reference plane. Physically, such a case corresponds to a
straight shear band or fracture process zone in a large body, with negligible influence of bound-
aries.

The reference plane is defined by its normal � . Let us introduce a local Cartesian coordinate
system with axis

�
in the direction of � and axes � and � perpendicular to it. The current state is

considered as uniform, i.e., the current values of stress � , strain � and all other variables do not
depend on the spatial coordinates. The rates to be found,

�
�� � � ,

�
�  � � etc., are functions of the local

coordinate
�
.

The loading program is defined by a suitable combination of strain and stress rates that are con-
trolled on the remote boundaries. We will look for localized solutions with plastic yielding limited
to a band centered around

� � #
and with the material far from the band elastically unloading. In

this case, the far-field stress and strain rates are linked by the invertible elastic law, and mixed con-
ditions can be easily transformed into conditions for the strain rates or the stress rates. Therefore,
we can assume that the far-field conditions are given by

������
	���
�
�  � �(�

�
��� (14)

������
	���
�
�� � �8�

�
� � (15)

where � is a given reference strain, � � � � 	 � is the corresponding reference stress, and

�
� is an

undetermined load multiplier rate.
From compatibility equations it follows that the in-plane strain rate components

�
D ��� ,

�
D��
� and

�
D � � must be uniform, independent of

�
. This is formally expressed by the equation�

�  � �8�
�
��� :�� ���

�
�  � �������! (16)

where � is the polarization vector. From equilibrium equations it follows that the out-of-plane
stress rate components

�
) �"� ,

�
) � � and

�
) � � must be uniform, independent of

�
. This is formally

expressed by the equation

�$#
�
�  � �(�

�
� �$# � (17)

where �%# �����%# � � 	 � is the reference far-field traction.
Substituting the flow rule (2) into the rate form of the stress-strain law (1), we obtain the ex-

pression for the stress rate�
��� � �
	�

�
��� �

�� � (18)

in terms of the strain rate

�
� and the rate of the plastic multiplier

��
. Since the current state is

assumed to be given and to be uniform, the flow direction
�

can be treated as a known constant.
The current value of the yield function must also be constant, and it must be zero, otherwise the
material response would remain elastic as long as

' 2 #
and no localization would be possible. If' � #

, its rate

�'
must satisfy the complementarity conditions��5!�# �

�' 6 # �
�� �' � #

(19)

that are similar to (4) but with
'

replaced by

�'
. Differentiating (3) and using (13) and (6), we can

express the rate of the yield function�' ��&<	
�
�3� = �F �

�� : F��!�
��� � (20)

as a function of the stress rate and of the rate of the plastic multiplier. The gradient of the yield
function with respect to the stress, &�� � ' H��>� , can also be considered as a given constant (under
the assumption of a uniform state).
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The problem to be solved consists in relating the rates

�
� ,

�
�.� ,

�
� ,

��
and

�
� to the load rate

�
� . All

these rates are in general functions of
�
, while the current values & ,

�
, F � and F �!� are constant

and their values are known, same as the reference values � and � . The orientation vector � is an
arbitrary unit vector and the question to be answered is whether there exists a certain � for which
the rate problem admits a nonuniform solution with the plastic zone localized into a band of finite
width and whether this nonuniform solution can be discontinuous.

3.3 Localization analysis

Since the averaging operator in (20) acts on the plastic multiplier rate, we select

��  A � as the
primary unknown field and eliminate all the other rates from the problem. First, combining (16)–
(18) we obtain

�$# � � 	��
�
��� :�� ���

�
�  � ��� � �� � �

��  � ��� �
�
� � # � (21)

Since � � � �?	 � , the terms

�
� � # � � 	 � and

�
� � # � cancel out. Due to minor symmetry of the

elastic stiffness tensor, we have

�$# � � 	 � ���
�
�  � ���+�  �$# � � # � � # �  � �8��� � # �  � � (22)

where

� � ���%# � � # � (23)

is the elastic acoustic tensor, known to be invertible. We can therefore use (21) to express

�
� in

terms of

��
and then substitute into the expressions (16), (18) and (20) for the strain rate, stress rate

and rate of the yield function:�
�  � � � ��� �� #� � # � �
	 � �

��  � � (24)�
�  � � �

�
��� : � � ���	� �� #� � # � � 	 � � � ���! 

��  � � (25)�
�  � � �

�
� � �
	 � : �  � � # � ��#
� � �� #  �$# � � 	 � �/� � � 	 � �

��  � � (26)�'  � � �
�
� &<	 � � 	 � : = F�� ���������

��  � �8� = � F �
��  � �>:<F��!�

���  � � � (27)

In the last expression,

F�� ��������� � = � � �  & 	 � � # � ��#
��� �� #  �$# � � 	 � �/�%&<	 � � 	 � � (28)

is the critical value of the plastic modulus that would allow, for the given orientation � , a dis-
continuous bifurcation; see Rudnicky and Rice (1975) or Runesson et al. (1991). With

�'
given

by (27), the complementarity conditions (19) depend exclusively on the plastic multiplier rate, its
nonlocal average, and the load multiplier rate. The problem to be solved is an integral version of a
linear complementarity problem.

Let us look for solutions with plastic flow localized in an interval � � . Inside �-� , the plastic
multiplier rate is positive and the rate of the yield function must vanish. The condition

�' � # with
�'
given by (27) has the character of a Fredholm integral equation of the form

�
���  � �I:��

��  � �8����� � ��� � (29)

with � � = F��!�/� � � = �F � �"F � ��������� ��� � �
�
� &<	 � � 	 � (30)
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The solution

��  � � is admissible if it is nonnegative in � � and if the corresponding rate of the yield
function,

�'  � � , is nonpositive for
� H� ��� . Since

��  � � vanishes for
� H� � � , this latter condition can

be written as�
���  � � ! ��� � H� �@� (31)

If � �� #
, we can express from (29)��  � �8� �$� �

���  � �
� � � � �@� (32)

The nonlocal plastic multiplier rate

���  � � is continuous by construction. Consequently, the local
rate

��  � � satisfying (32) is also continuous inside � � . Consider a point
� � � on the boundary of ��� ,

separating the localized plastic zone from the surrounding zone of elastic unloading (or of neutral
loading). As

�
approaches

� � � from the interior of ��� ,
��  � � tends to its limit value�� � � � � � �

���  � � ���
� (33)

which must be nonnegative. Since

���
is continuous, its value at

� � � must satisfy condition (31), i.e.,
the numerator in (33) is nonpositive. Now if � 4 #

, the fraction on the right-hand side of (33) is
nonpositive, and condition

�� � � ! # can be satisfied only if

�� � � vanishes. In this case, the rate of the
plastic multiplier is continuous not only inside the plastic zone but everywhere, because outside
the plastic zone it vanishes by definition and the transition between the elastic and plastic zones
has just been proven to be continuous.

The foregoing mathematical analysis has shown that if � 4 #
, i.e., if

F�� 4 F�� ��������� (34)

then the solution must be continuous. Physically, this means that if the “local part” of the plastic
modulus is above the critical plastic modulus determined by the standard localization analysis
based on the acoustic tensor for the given orientation � , the plastic strain rate cannot develop
a discontinuity across a plane with normal � . The maximum value of F � � ������� over all possible
orientations will be denoted as F ������� . If

F � 4 F ��������� �����
� F � ��������� (35)

then the plastic strain rate must remain continuous (provided that discontinuities across planes
are the most critical ones, which is only assumed here, but not rigorously proven). Note that, in
general, both sides of the inequality in (35) depend on the current state of the material, in particular
on the stress and the hardening variables. If a certain model satisfies condition (35) for all states
that can be attained, discontinuous bifurcations (of the planar type considered here) cannot take
place and the model can be considered as properly regularized.

A suitable nonlocal formulation should surpress discontinuous localization but, at the same
time, should allow the development of continuous localization patterns. Let us check under which
conditions the rate problem can be expected to have a (nontrivial, i.e., nonuniform) solution. Two
particular properties of the nonlocal averaging operator related to averaging of nonnegative fields
turn out to be useful. First, the nonlocal average can nowhere exceed the maximum value of the
local field. Second, if the local field vanishes on one side of a plane and is strictly positive at least
in a small but finite band on the other side, then the gradient of the nonlocal field evaluated on that
plane is oriented to the side on which the local field is positive.

These two properties will now be applied to the nonlocal plastic multiplier rate. Let us return
to equation (32). We assume that � 4 #

, so that discontinuities are excluded. Since

��  � � !�# , we
obtain �

���  � ��6 ��� � � � � (36)
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On the elastoplastic boundary, we have
�
���  � � � �(��� . As point

�
moves from

� � � into the interior

of � � ,
���  � � is increasing (due to the second property) but

�
���  � � must not increase, so as to satisfy

(36). This is possible only if
� 6 # . Since

���  � � � � 4 # and � � �
���  � � � � , we can also show that� 6 # . Knowing this, we can exploit the first property and write

� ���� �����
���  � � 6 � ���� �����

��  � � (37)

Using (32) and � 4 #
, we obtain

 � : � � ������ ��� �
���  � ��6 � (38)

and since � 6 # and

���  � � ! # , we conclude that
� :�� must be nonpositive. If this condition is

not satisfied, no solution of the rate problem with plastic strain rate localized into a finite interval
can exist. The condition

� : � 6 # means that

F�� :<F��!� 6 F � � ������� (39)

Obviously, conditions (34) and (39) can be satisfied simultaneously only if the “nonlocal part” of
the plastic modulus, F#�!� , is negative.

To complete the theoretical analysis, consider the case when � 6 # , i.e., F � 6 F � ��������� . In this
case, a discontinuous bifurcation can be expected. Indeed, suppose that the local rate

��  � � local-
izes into a narrow band of thickness ; , much smaller than the nonlocal interaction radius

�
. The

nonlocal rate

���  � � is then almost constant in � � and, according to (32), the local rate is also al-
most constant. Let us therefore set

��  � � �
�� � const. for

� � �1� and

��  � �
� #
for

� H� � � . For

convenience, we place the plastic zone at
� � #

. The nonlocal rate is given by

���  � ���
�� ; � 9  � �

where function
� 9 is defined by

� 9� � � � �  # � � � ; note that this function is nonnegative and has its
maximum at

� � # . Equation (29) is rewritten as�
�� ; � 9� # �I:��

�� ��� (40)

and condition (31) as�
�� ; � 9� � � ! ��� � �� #

(41)

Combining this and taking into account that

�� 4 #
, we get� ;�� � 9� # �8� � 9� � ��� 6 ���5� � �� #

(42)

The term
� 9� # � � � 9� � � varies between 0 and

� 9� # � , and ; is very small. Consequently, if �
is positive, condition (42) cannot be satisfied. This is consistent with our previous result that no
discontinuities can develop for � 4 #

. If � � #
, condition (42) is satisfied if and only if

� 6 # .
Finally, if � 2 #

, condition (42) is satisfied independently of the value of
�

(because even if� 4 #
, it suffices to chose ; smaller than ��� H � � � 9  # ��� ).

It is worth noting that � is proportional to the load parameter rate,

�
� . If � � #

and
� � #

,
the load rate vanishes, i.e., localized yielding takes place at constant load (and constant stress and
strain outside the plastic zone). If � � #

and
� 2 #

, the load rate is proportional to the product
�� ; , which is proportional to the rate of displacement jump across the plastic zone. Physically,
this means that the nonlocal model gives the same solution as a cohesive zone model based on
a traction-separation law. The plastic zone is localized into a set of zero measure, but the dissi-
pation does not vanish and the load-displacement diagram on the structural level does not suffer
by pathological sensitivity to the mesh size. Finally, if � 2 #

, the load rate is proportional to the
plastic strain rate. Since the plastic zone is arbitrarily thin, the dissipation rate becomes negligible
and the solution is physically meaningless.

In summary, five types of localization patterns can be expected, depending on the values of local
and nonlocal plastic moduli:
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� F � ! F ������� and F ��:<F���� 4 F ������� ... no localization

� F � 4 F ������� and F � :<F ��� 63F ������� ... localization into a band, continuous strain rate

� F � � F ������� and F ��:<F���� � F ������� ... localization into a plane, yielding at constant load

� F � � F ������� and F ��:<F���� 2 F ������� ... localization into a plane, similar to cohesive zone

� F � 2 F ������� ... localization into a plane, vanishing dissipation

3.4 Examples
The simplest form of nonlocal hardening law is obtained if, in the local law (5), & is replaced by
its nonlocal average

�& . In other words, function ; � in (12) is defined as ; �  & � �& � � ;  �& � . The local
plastic modulus F � then vanishes and condition (35) is satisfied if the critical plastic modulus is
negative. In the one-dimensional setting, we have F ������� � #

. This means that localization takes
place if F �!� 6 #

, and the plastic strain localizes into a set of zero measure (a point in the one-
dimensional case) but the dissipation does not vanish. Such a formulation is essentially equivalent
to a cohesive zone model.

Full regularization, with a nonvanishing size of the localized plastic region, can be achieved
if the softening process is driven by a combination of the local and nonlocal cumulative plastic
strains,

�& ��� �& :* � ��� � & (43)

in which � is a new model parameter. The nonlocal hardening function is given by

; �  & � �& �(�$; �� �& :$ � ��� � & � (44)

and the local and nonlocal plastic moduli are

F � �  � ��� �-F � F �!� ��� F (45)

where FG� d ;>H d �& in general depends on
�& . This type of nonlocal formulation was first pro-

posed by Vermeer and Brinkgreve (1994) and later analyzed by Planas et al. (1996) and used by
Strömberg and Ristinmaa (1996). All of them considered ; as a decreasing function, i.e., F 2 #

.
In this case, condition (35) can be satisfied if � is sufficiently larger than 1. For instance, in the
one-dimensional case or for associated flow (i.e., for

� � & ), we have F ������� � # and it is sufficient
to choose �

4 �
. The nonlocal plastic modulus F �!� �	� F is then always negative. In the one-

dimensional setting, plastic strain localizes right away at the onset of yielding into a finite interval,
the size of which is proportional to the interaction radius

�
and depends also on the parameter �

(tends to zero for ��

��

and tends to infinity for ��
�� ). The size of the plastic zone does not
change during softening, same as the shape of the plastic strain profile. For � � � , the model re-
duces to the previously discussed simple nonlocal model with hardening law ) Y � )+98: ;8 �& � . For
�
2 �

, condition (35) could easily be violated and the energy dissipation for the fully localized
solution would vanish.

The nonlocal formulation of the Vermeer-Brinkgreve type with �
4 �

can serve as a localization
limiter for plastic models with softening. However, if softening is preceded by hardening, we haveF 4 #

and F � �  � ��� �-F 2 #
. The effect of the nonlocal term then becomes destabilizing

and leads to localization of plastic strains. Therefore, this type of nonlocal formulation has a
limited scope and cannot be used for general elastoplastic models (at least not with fixed � ). The
assumption that softening starts immediately at the elastic limit would be too artificial for materials
like concrete, if general stress paths (including compression) are to be covered.

Reasonable response in both regimes, hardening and softening, can be obtained with a modified
form of nonlocal hardening law, in which the current yield stress is expressed as a product of two
terms that depend respectively on the local and nonlocal cumulative plastic strain:

) Y  & � �& �8�*; �  & � ; ���  �& � (46)

Existing models of this type are closely related to the concept of ductile damage. The local part
of the hardening law can be interpreted as the effective yield stress, i.e., as the yield stress of the
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Figure 1: Ductile damage model of Geers and coworkers with exponential damage law: (a) evolu-
tion of plastic strain profile, (b) load-displacement diagram.
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Figure 2: Localization into a shear band simulated with the nonlocal Drucker-Prager model
on different finite element meshes: (a) distribution of the local softening variable & , (b) load-
displacement diagrams.

bulk material between voids and cracks, and the nonlocal part as the reduction due to damage.
This concept was used for metals by Geers et al. (2001), who considered the local part as linear,; �7 & �(� )>9(:<F 9 & , where F 9 4 # is the hardening modulus of the metallic matrix. The nonlocal
part was written in the form ; �!�( �& � � � ���I�� �& � with �>� � ductile damage variable reflecting the
influence of voids and varying between 0 and 1. Depending on the choice of the function relating�>� to

�& , various shapes of the stress-strain diagram can be obtained. The local and nonlocal plastic
moduli are given by

F � � d ; �
d & ; �!� �  � � � � �-F 9 (47)

F ��� � d ; �!�
d
�& ;�� � � �)+97: F 9 & � � �� (48)

where � �� � d �>��H d �& . If �+� 2 � and F 9 4 #
, the local plastic modulus is positive. The ductile

damage model by Geers et al. (2001) uses the von Mises yield condition with an associated flow
rule, for which the maximum critical hardening modulus is zero. Consequently, positiveness of the
matrix hardening modulus F�9 is sufficient to preclude the discontinuous bifurcation. The nonlo-
cal plastic modulus F#�!� is always negative, and if its magnitude is large enough, plastic strain
can localize into a band of finite thickness. The evolution of the plastic strain profile in a one-
dimensional localization test is shown in Fig. 1a and the load-displacement diagram in Fig. 1b.
For comparison, the diagram corresponding to the (unstable) uniform solution is plotted as the
dashed curve.

In Rolshoven (2003), hardening law of the form (46) was adapted for materials like concrete. In
applications to cohesive-frictional materials, one must in general admit nonassociated flow rules,
and the critical hardening modulus can become positive. Still, if the local plastic modulus is kept
sufficiently large, the discontinuous bifurcation cannot appear (at least not under the idealized
conditions of infinite medium under uniform state and discontinuity along a plane).

The nonlocal model with hardening law (46) and with a sufficiently large value of the local
plastic modulus does not allow discontinuous bifurcation, but localization is still possible. The

9



localized plastic region has a certain minimum width and energy dissipation does not vanish. This
is illustrated in Fig. 2a, which shows a shear band in a rectangular specimen under plane strain
compression, captured by the finite element method on four different meshes. In this academic
example, we use the Drucker-Prager yield function and a nonassociated flow rule, i.e.,

� �� & . Upon
mesh refinement, the load-displacement diagram converges and no pathological mesh dependence
is observed; see Fig. 2b.

Plasticity models with dependence of the yield stress on the nonlocal cumulative plastic strain
can provide an objective description of the localization process. However, this type of nonlocal
formulation requires a complicated stress-return algorithm due to coupling among Gauss points.
This motivates the search for an alternative regularization technique that would lead to a less
expensive numerical algorithm.

4 PLASTICITY WITH NONLOCAL DAMAGE LAW
4.1 Combined plastic-damage model
For materials like concrete, the standard plasticity theory with dissipation only by plastic yielding
and with no degradation of the elastic stiffness can be considered only as a rough approximation.
This type of description is appropriate under highly confined compression, when the propagation
of cracks is restricted and the deformation process indeed has a plastic character. Under tensile
loading, but also under unconfined compression or shear, cracking plays an important role and has
a major influence on the failure process. Still, formally it is possible to use a plastic model with
softening, but from the physical point of view it is more appropriate to take the cracks into account
by reduction of the elastic stiffness, in the spirit of continuum damage mechanics. Since a pure
damage model would again have a limited scope, the most appropriate modeling framework seems
to be the combination of plasticity theory and damage mechanics.

A natural generalization of stress-strain laws (1) and (7) that contains both of them as special
cases is

���  � ��� � � �
	��������� �8�  � � � � �� (49)

Here, the effective stress
��"� � �7	��� � ����� can be interpreted as the actual stress in the undamaged

material between voids and cracks, and
� � � is the reduction factor that transforms the effective

stress into the nominal stress, transmitted by the material on the macroscopic level. In addition to
the stress-strain law, we need to specify which quantities should be used in the evolution equations
for internal variables such as � � , & or � . Here, the choice is not unique. For instance, the yield
condition can be written for the effective stress or for the nominal one. Damage can be driven
by the total strain, elastic strain, or plastic strain. The formulation should take into account the
physical origin of inelastic processes in the particular material, but also the implications for the
numerical implementation, regularization technique, etc.

The model proposed here is based on yield condition for effective stress and damage driven by
cumulative plastic strain. So the yield function is written as'  ���� & �(�*)+�-,. ����/�") Y  & � (50)

and the internal variable & � that drives the evolution of damage is set equal to the cumulative
plastic strain & , i.e., damage is evaluated as ��� � �  & � . The yield stress ) Y is assumed to be a
nondecreasing function of & but it represents the yield value of the equivalent effective stress.
If yielding takes place at constant or slowly increasing effective stress, the nominal stress can
decrease due to the growth of damage. In this way, softening is described as the combined effect
of plastic flow and propagation of defects.

In the nonlocal version of the damage-plastic model, the variable & � that drives damage is
determined as a combination of the local and nonlocal cumulative plastic strain. To make sure that& � will never decrease, we define the damage loading function' �� & � � & � �& �(��� �& :* � ��� � & � & � (51)

and enforce the complementarity conditions (9). Damage is still evaluated explicitly as � � � �  & ��� .
If
' � � #

, the damage rate can be expressed as�
� ��� ��

�& � � � �� � �
��& :* � ��� �

�&�� � � �� =�� �
��� :$ � ��� �

����
(52)
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where � �� � d ���.H d & � and
������� � is the positive-part operator.

4.2 Rate problem
The problem of bifurcation from a uniform state in an infinite medium will now be reformulated
for the combined plastic-damage model. The general approach is the same as in Section 3.2, but
eqs. (18) and (20) must be replaced by�

���  � ��� �
�
��3� ��

�
� �  � � � � � � 	�

�
� � �

�� � � ��!� �� = � �
��� :$ � ��� �

�� �
(53)

and �' ��&<	
�
��3� F

�& � & 	 � � 	�
�
��� �

�� � � = F
��

(54)

Substituting (53) and (16) into (17) and using the relation � �* � � � � � �7	 � , we obtain an equation
from which we can express�

�  � �7� � � �� #  � # � � 	 � �
��  � �I: � � �� # ��%# � � �� =� ��� � �

���  � � :  � ��� �
��  � � � (55)

This is the modified form of (24). Substituting (55) into (16) and (54), we get the rate of the yield
function in terms of the rate of load multiplier and local and nonlocal rates of plastic multiplier,�'  � �(�

�
� & 	 � � 	 � : = � F � ��������� � � �"F��

��  � � : =�� F � ��������� � � � �
���  � �>:$ � ��� �

��  � � � (56)

in which

F�� ��������� � � � = � �  & 	 � � # � ��#
��� �� #  �$# � � 	 � � (57)

is the critical value of plastic modulus evaluated for the plasticity model only, and

� F � ��������� � � � F � ��������� ��F�� ��������� � � � � ��� � �  & 	 � � #�� � # ��� �� # �� #�� (58)

is the difference between the critical modulus of the combined plastic-damage model and the
critical modulus of the plasticity model; this difference is attributed to the presence of the damage
term.

4.3 Localization analysis

The consistency condition

�' � #
, to be satisfied inside the plastic zone, has again the character

of a Fredholm integral equation, but this time it contains a damage-related term that must not be
negative and therefore is placed in the positive-part brackets. If damage grows everywhere inside
the plastic zone, these brackets can be omitted and the integral equation has the form (29) with
parameters

� � � � =�� F � ��������� � � �	� � = � F �"F � ��������� � � � : �� � � � =�� F�� ��������� � � � � �
�
� & 	 � � 	 � (59)

Based on the general results derived in Section 3.3, we expect a continuous bifurcation if � 4 #
and

� :�� 2 #
, i.e., if

F � ��������� � � :  � ��� � � F � ��������� � � 2 F 2 F � ��������� � � : � F � ��������� � � � F � ��������� (60)

and a discontinuous bifurcation if � 6 # , i.e., if

F 6�F � ��������� � � :* � ��� � � F � ��������� � � (61)

However, we must also admit that the combination �

���  � � :* � ��� �
��  � � could be negative. Ob-

viously, this can happen only inside the plastic zone and only if �
4 �

(or �
2 #

, which is not
considered here). In this case, the last term in (56) vanishes and the consistency condition�

� & 	 � � 	 � : = � F � ��������� � � �"F �
��  � �7� # � � � � � �  �?;>H
	 �@;>H
	�� (62)
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is not an integral equation but a simple algebraic equation. Since

�
� &3	 � � 	 � 6 # and

��  � � 4 # ,
condition (62) can be satisfied only if F 63F � ��������� � � .

Consider first the critical case F � F � ��������� � � . According to (62),

�
� & 	 � ��	 � must vanish and

��  � � can be arbitrary. The solution is admissible only if

�' 6 # outside the plastic zone, which is

equivalent to
=
�
� F�� ��������� � �

���  � ��6 # for
� H��� � . Sufficiently close to the elastoplastic boundary, the

nonlocal rate

���  � � is strictly positive, and so the condition can be satisfied only if
� F � ��������� � � 6 # .

Since the term  & 	 � � # � ��#
� � �� # �� # � in (58) is usually positive (but this must be verified for
each particular model), localization of the present type is excluded if � �� 4 #

, i.e., if the damage
growth is activated. If this is not the case, the model is reduced to a local plasticity model with a
critical value of hardening modulus, and a classical discontinuous bifurcation occurs.

Let us now turn attention to the case that F is strictly smaller than F � ��������� � � . The rate of the plastic

multiplier

��  � � solved from (62) is then uniform (independent of
�
) and equal to�� �

�
� &<	 � � 	 �= � F � F � ��������� � � � (63)

If the plastic zone has a width ; much smaller than the nonlocal interaction radius
�

, the nonlocal
rate of plastic multiplier is given by���  � �8�

�� ; � 9� � �7�
�
� &<	 � �
	 � ; � 9� � �= � F ��F � ��������� � � � (64)

and condition

�' 6 # outside the plastic zone reads�
� & 	 � � 	 � : = � � F � ��������� � �

���  � ��6 # � � H� �@� (65)

This is easily satisfied if ; is chosen sufficiently small, and so the case F 2 F � ��������� � � leads to a dis-

continuous bifurcation independently of the value of
� F � ��������� � � . The plastic zone is fully localized

and damage grows only in the neighborhood of the plastic zone but not in the plastic zone itself.
In summary, localization analysis of the present type of nonlocal plastic-damage model shows

that the behavior is governed by two critical values of plastic modulus, F ������� and F ������� � � , which
are both obtained by classical localization analysis of the corresponding local model based on
the acoustic tensor, but F ������� is evaluated for the complete plastic-damage model while F ������� � �
is evaluated for the plastic part only, with damage growth disabled. Bifurcation from a uniform
state can be expected if the actual plastic modulus F drops below F ������� . If F remains aboveF � � � �*F ������� � � : � � ��� � � F ������� � � , the strain rate remains continuous. Discontinuous bifurcation
occurs if F is smaller than F � � � . In the limit case F � F � � � , the bifurcation is continuous for
�
4 �

and discontinuous for �
2 �

. For � � � , the bifurcation is discontinuous but the energy
dissipation does not vanish and the behavior is similar to a cohesive zone model.

4.4 Examples
The main results are first illustrated by a one-dimensional example. In one dimension, the criti-
cal plastic modulus for the plastic model without damage is F ������� � � � #

, and the critical plastic
modulus for the combined plastic-damage model F ������� � �) � �� H� � � � � corresponds to a vanish-
ing tangent stiffness of the combined model. Three parameter combinations are considered, and
the results are plotted in Fig. 3 in terms of load-displacement diagrams and graphs showing the
evolution of plastic strain and damage. For F � #

and � � � , plastic strain is fully localized and
damage is distributed in an interval of width 	 � . For F � # and � � 	 , plastic strain is distributed
in a continuous manner and damage is uniform in the plastic zone and decreases continuously to
zero in intervals of width

�
around the plastic zone. For F 4 #

and � � � , both plastic strain
and damage are continuously distributed, with maximum values in the middle of the localized
zone. In all three cases, the load-displacement diagrams converge upon mesh refinement and the
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Figure 3: Load-displacement diagrams and distribution of plastic strain and damage for nonlocal
plastic-damage model with different combinations of parameters.

(a) (b)

Figure 4: Increments of plastic strain at four stages of analysis; nonlocal plastic-damage model
with parameters (a) � � � and

� � # � �
m, (b) � � 	 and

� � # � # �
m.
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Figure 5: Load-displacement diagrams obtained with nonlocal plastic-damage model on three dif-
ferent meshes.
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area under them (dissipated energy) remains nonzero. For comparison, the dashed curves show the
load-displacement diagrams for the unstable uniform solution.

Results of two-dimensional analysis of a rectangular panel under plane-strain conditions are
presented next. The underlying plasticity model uses the Drucker-Prager yield condition and a
nonassociated flow rule, and the damage evolution law is of the exponential type. The hardening
law corresponds to perfect plasticity, i.e., ) Y � )>9 � const., which means that the actual plastic
modulus F vanishes. The evolution of the active part of plastic zone is shown in Fig. 4a for � � �
and

� � # � � m and in Fig. 4b for � � 	 and
� � # � # �

m. The plotted quantity is the increment of
hardening variable & (scalar measure of plastic strain increment). For � � � , the plastic zone has
initially a certain width and later is reduced to a single element layer. For � � 	 , the active part of
the plastic zone also decreases but remains larger than the size of one element (for fine meshes).
The load-displacement diagrams in Fig. 5 show very little mesh sensitivity.

5 CONCLUSIONS
We have shown that there is a close relationship between the critical plastic modulus obtained by
classical localization analysis based on the acoustic tensor of a local model and the conditions
of bifurcation from a uniform state for the nonlocal extension of that model based on nonlocal
hardening law or nonlocal damage evolution law. The results serve as a basis for the development
of a regularized model for concrete that can capture both tensile and compressive failure modes.
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éléments finis 10, 173–191.
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