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Abstract. In this paper, a three-dimensional modelling approach to combine fracture and
inviscid flow is proposed. Lattices of structural elements for the mechanical behaviour
(elasticity and fracture) and conduit elements for the flow are combined. The spatial
arrangement and the properties of the lattice elements is based on irregular Voronoi and
Delaunay tessellations of the domain, respectively. The transport properties of the conduit
elements are chosen to evolve with the crack openings of the neighbouring structural
elements. The new lattice approach is applied to stationary potential flow.

1 INTRODUCTION

Fracture increases the permeability of cementitious materials, which is known to ac-
celerate deterioration of these materials when exposed to aggressive environments. The
coupling of fracture and flow is therefore important for modelling the durability of ce-
mentitious materials. However, modelling of these coupled processes with continuum
mechanics presents several challenges, including the discrete representation of crack for-
mation and opening. Lattice models are an attractive alternative in that they describe
well the discontinuities that arise from fracture processes in concrete materials1,2. In addi-
tion, lattice approaches to modelling flow have been validated through comparisons with
theory and finite element solutions3. Furthermore, two-dimensional lattice approaches
have been developed to couple the individual lattices representing mechanical behaviour
(i.e. elasticity and fracture) and flow4,5. These models have been used to analyse station-
ary and nonstationary flow fields and it was shown that basic theoretical solutions could
be accurately reproduced. Furthermore, the coupling of flow and fracture was analysed in

1



P. Grassl and J. E. Bolander

(a) (b) (c)

Figure 1: Lattice model: (a) Delaunay tetrahedra and Voronoi polyhedra facet. (b) Structural lattice
element. (c) Flow lattice element.

comparison with several benchmark problems and the sensitivity of the numerical results
with respect to the size of the lattice elements was studied5. The present paper describes
basic concepts and preliminary steps toward extending this model to three dimensions.

2 COMBINED MODEL FOR MECHANICAL LOADING AND FLOW

The present three-dimensional numerical model for the coupling of potential flow and
fracture is based on lattices of one-dimensional structural and conduit elements. The spa-
tial arrangement of the lattice elements and their cross-sectional properties are based on
Delaunay and Voronoi tessellations of the domain to be modelled. For a three-dimensional
domain, the Voronoi tesselation results in polyhedra with Voronoi facets, edges and ver-
tices. On the other hand, the Delaunay tessellation consists of tetrahedra with Delaunay
facets, edges and vertices. In Fig. 1a, a Delaunay tetrahedron and a facet of a Voronoi
polyhedron are shown.

For the mechanical lattice, the lattice elements are placed on the edges of the Delaunay
tetrahedra. The geometry of the mid cross-section of the lattice elements is determined by
the corresponding facet of the Voronoi polyhedra (Fig. 1b). Each node has six degrees of
freedom, that is three translations and three rotations, which determine the displacement
jump at the centroid C of the element’s mid cross-section. The displacement jumps are
transformed into strains by the element length. An isotropic damage model is used to
relate the strains to stresses. The evolution of damage is controlled by a stress-crack
opening curve, so that the mechanical response is independent of the length of the lattice
elements used.

The flow lattice consists of one-dimensional conduit elements, for which the locations
and cross-sectional properties are obtained from the Voronoi and Delaunay tessellation.
The conduit elements are placed on the edges of the Voronoi polyhedra. Furthermore, the
cross-sectional areas of the conduit elements are set equal to the facet areas of the corre-
sponding Delaunay tetrahedra (Fig. 1c). The increase of the diffusivity due to cracking is
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Figure 2: Uniaxial flow: (a) Geometry of the cubic domain. (b) Irregular lattice of conduit elements.

described by the crack-openings of the three structural lattice elements, which are placed
on the boundary of the mid cross-section of the conduit element.

3 RESULTS

As a step toward extending the coupled flow-fracture analyses to three dimensions,
the new flow lattice is used to analyse uniaxial stationary flow in a cubic domain shown
in Fig. 2a. The domain is discretised by an irregular lattice of conduit elements, which
are placed on the edges of the Voronoi polyhedra as described in the previous section
(Fig. 2b). The cross-sectional areas of the conduit elements are chosen in two ways. In
the first approach, cross-sectional areas are determined by the dual Delaunay tessellation.
In the second approach, a constant cross-sectional area is used for all conduit elements.
The nodes on the left and right hand sides (x = 0 and x = ℓ) of the model domain
of unit length and diffusivity are subjected to constant potentials of θ = 0 and θ = 1,
respectively. For the other four faces, the boundary flux is assumed to be zero. The
exact solution for this problem is θ = x. The flow along the x-direction for y = z = ℓ/2
for the two approaches is shown in Fig. 3. The accuracy of the modelling approach is
assessed by comparing the L2 error norm to the exact solution. The error for a constant
cross-sectional area is er = 0.0042, whereas the error for cross-sectional areas obtained
from the Delaunay tessellation is er = 4.72× 10−17.

Consequently, the lattice with conduit elements placed on the edges of Voronoi tes-
sellation and cross-sections obtained from the dual Delaunay tessellation results in an
accurate description of the stationary flow field. The results of the present study com-
plement results obtained from a dual lattice approach, in which the conduit elements are
placed on the edges of the Delaunay tessellation and the cross-sections are the facets of
the Voronoi tessellation3.
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Figure 3: Uniaxial flow: Distribution of the potential along the x-axis for y = z = ℓ/2.

4 CONCLUSIONS

The new coupled lattice approach, which is based on an irregular Delaunay and Voronoi
tessellation of the domain, allows for precise three-dimensional representation of stationary
potential flow. Based on previous two-dimensional results, the approach provides an
objective (mesh size independent) means for simulating the influence of cracking on flow.
Ongoing work involves the extension of this capability to three-dimensional analyses,
along with investigations of non-stationary flow through fractured media.
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