FE modelling of rebar laps in steel fibre reinforced concrete

Peter Grassl, Jane Middlemiss James Watt School of Engineering University of Glasgow, UK

Virtual laboratory for concrete at University of Glasgow

http://petergrassl.comPeter Grassl, SEMC2019

Background: Structural concrete

Aim

Investigate influence of concrete properties (addition of fibres) on straight rebar laps

Approach

3D nonlinear finite element analysis with damage plasticity model (CDPM2)

Ref: CDPM2 Grassl et al. (2013)sl, SEMC2019

Constitutive response for concrete

Ref: Grassl et al. (2013), Gopalaratnam and Shah (1985)

Constitutive response for concrete

Ref: Grassl et al. (2013), Canerand Bazant (2000)

Crack-band approach

Ref: Bazant and Oh (1989) Peter Grassl, SEMC2019

Constitutive models

Geometry and setup

Plain and fibre reinforced concrete

Stress crack-opening input

Load-displacement

Cracks for no fibres: Pre-Peak

Cracks for no fibres: Peak

Load-displacement

Cracks for fibres: Peak

Discussion

FE-approach is capable of producing spalling failure in loop splices with plain concrete.

In the model, adding fibres prevents sudden failure mode.