Hydraulic fracture of a porous thick-walled hollow sphere

Peter Grassl
University of Glasgow, UK

Domenico Gallipoli
University of Pau, France

Milan Jirásek
Czech Technical University, Czech Republic
Background

Hydraulic fracture processes in permeable geomaterials with stationary fluid flow.

Aim

Study the importance of Biot coefficient for hydraulic fracture processes.

Methodology

Investigate fracture of permeable thick-walled hollow sphere subjected to inner fluid pressure.
Outline

Assumptions and notations

Fluid driven loading

Elastic response

Nonlinear fracture response

Size effect
Assumptions and notations

- Spherical symmetry
- Stationary flow
- Constant viscosity and permeability
- Small displacements
- Influence of gravity neglected

\(P_{fi} \) tension positive
Fluid driven loading
Fluid driven loading

\[\dot{V} = \dot{V}_i + Q \quad \dot{V}_i = \dot{u}_i 4\pi r_i^2 \]

\[q = \frac{Q}{4\pi r^2} \quad q = \frac{\kappa}{\mu} \frac{dP_f}{dr} \]

Pressure distribution

\[\bar{P}_f = \bar{P}_{fi} \frac{\bar{r} - \bar{r}_o}{\bar{r} (1 - \bar{r}_o)} \]

with dimensionless variables

\[\bar{P}_{fi} = P_{fi}/E \quad \bar{P}_f = P_f/E \quad \bar{r} = r/r_i \quad \bar{r}_o = r_o/r_i \]
Elastic response
Equilibrium condition

\[
\frac{d\sigma_r}{dr} + 2\frac{\sigma_r - \sigma_t}{r} = 0
\]

Stress definition

\[
\sigma_r = \sigma_r^m + bP_f
\]

\[
\sigma_t = \sigma_t^m + bP_f
\]

Constitutive laws

\[
\varepsilon_r = \frac{1}{E} \left(\sigma_r^m - 2\nu \sigma_t^m \right)
\]

\[
\varepsilon_t = \frac{1}{E} \left((1 - \nu)\sigma_t^m - \nu\sigma_r^m \right)
\]

Kinematics

\[
\varepsilon_r = \frac{du}{dr} \quad \varepsilon_t = \frac{u}{r}
\]

Dimensionless ODE

\[
\frac{d^2 \bar{u}}{d \bar{r}^2} + 2 \frac{d \bar{u}}{d \bar{r}} \frac{1}{\bar{r}} - 2 \frac{\bar{u}}{\bar{r}^2} + b \bar{P}_f (1 + \nu) (1 - 2\nu) \frac{1}{(1 - \nu)} \frac{\bar{r}_o}{1 - \bar{r}_o} \frac{1}{\bar{r}^2} = 0
\]

with dimensionless radial displacement

\[
\bar{u} = \frac{u}{r_i}
\]

Solve analytically and numerically for boundary conditions:

\[
\bar{\sigma}_r^m = (1 - b) \bar{P}_f \text{ at } \bar{r} = \bar{r}_i
\]

\[
\bar{\sigma}_r^m = 0 \text{ at } \bar{r} = \bar{r}_o
\]
Radial displacement versus radius

\[\nu = 0.2 \text{ and } \bar{r}_o = 7.25 \]

\[\bar{r} \]
Radial stress versus radius

$$\sigma_r^m / P_{fi}$$

$b = 1$

$b = 0.5$

$b = 0$

$\nu = 0.2$ and $\bar{r}_o = 7.25$

Analytical

Numerical
Tangential stress versus radius

\[\sigma_t \approx \frac{P}{2\pi} \left[1 - \nu \left(\frac{1}{r_o} - \frac{1}{\bar{r}_o} \right) \right] \]

\(\nu = 0.2 \) and \(\bar{r}_o = 7.25 \)
Nonlinear fracture response
Nonlinear fracture mechanics
Nonlinear fracture mechanics

Possible fracture pattern

\[\bar{\sigma}_t^m = \varepsilon_0 \exp \left(-\frac{\varepsilon_t^c}{\varepsilon_f} \right) \text{ with } \varepsilon_0 = \frac{f_t}{E} \]

\[\varepsilon_f = w_f \frac{l_c}{2S_c} = w_f \frac{\alpha}{r} = \bar{w}_f \frac{\alpha}{r} \text{ with } \bar{w}_f = \frac{w_f}{r_i} \]
Constitutive law for cracking

\[
\varepsilon_r = \frac{1}{E} (\sigma_r^m - 2\nu\sigma_t^m)
\]

\[
\varepsilon_t = \varepsilon_t^e + \varepsilon_t^c
\]

\[
\varepsilon_t^e = \frac{1}{E} \left((1 - \nu) \sigma_t^m - \nu \sigma_r^m \right)
\]
Nonlinear ODE

\[
\frac{d^2 \bar{u}}{d\bar{r}^2} + 2 \frac{d \bar{u}}{d\bar{r}} \frac{1}{\bar{r}} - 2 \frac{\bar{u}}{\bar{r}^2} - \frac{2\nu}{1 - \nu} \frac{d \varepsilon_t^c}{d\bar{r}} + \frac{2(1 - 2\nu)}{1 - \nu} \frac{\varepsilon_t^c}{\bar{r}} +
\]

\[
+b \frac{P_{fi}}{E} \frac{(1 + \nu)(1 - 2\nu)}{(1 - \nu)} \frac{\bar{r}_o}{1 - \bar{r}_o} \frac{1}{\bar{r}^2} = 0
\]

Numerical solution:

- Finite difference scheme
- Shooting method
- Newton method
- Outer displacement control
Pressure versus inner displacement

\[\nu = 0.2, \; \bar{r}_o = 7.25 \; \text{and} \; \alpha \bar{w}_f = 0.01 \]
Tangential effective stress versus radius

\[\frac{\dot{m}}{\dot{\varepsilon}_0} \]

\[\sigma_t \]

\[b=0 \quad \bar{r}_c = 3.08 \]

\[b=1 \]

\[5.17 \]

\[7.25 \]

\[\nu = 0.2, \quad \bar{r}_o = 7.25 \quad \text{and} \quad \alpha \bar{w}_f = 0.01 \]
$
u = 0.2$, $\bar{r}_o = 7.25$ and $\alpha \bar{w}_f = 0.01$
Size effect
Size effect

Investigate effect of inner radius r_i on strength for constant $\bar{r}_o = r_o / r_i$

Dimensionless input affected by change of r_i:

$\bar{w}_f = \frac{w_f}{r_i}$ with $w_f = \text{const}$

Equilibrium

$\bar{P}_{fi} = -2 \int_{1}^{\bar{r}_o} (\bar{\sigma}_t^m + b\bar{P}_f) \bar{r} \, d\bar{r}$
Limits

Plastic limit:

\[r_i \to 0 \Rightarrow \bar{w}_f = \frac{w_f}{r_i} \to \infty \]

\[\frac{\overline{P}_{f_{i,pl}}}{(\bar{r}_o^2 - 1)} = -\frac{\varepsilon_0}{1 + b(\bar{r}_o - 1)} \]

Onset of cracking:

\[r_i \to \infty \Rightarrow \bar{w}_f = \frac{w_f}{r_i} \to 0 \]

\[\frac{\overline{P}_{f_{i,el}}}{\bar{r}_o^2 - 1} = -\frac{1}{\bar{r}_o^2 - 1} \left(\frac{2\varepsilon_0}{1 - b\frac{1 - 2\nu}{1 - \nu}} \right) \left(\frac{\bar{r}_o^3 + 2}{\bar{r}_o^3 - 1} \right) + b\frac{1}{1 - \nu} \frac{\bar{r}_o - 2\nu}{\bar{r}_o - 1} \]
Size effect for $\bar{r}_o = 7.25$

$-\bar{P}_{fi,\text{max}}/(\bar{r}_o^2 - 1)$

$\bar{P}_{fi,\text{pl}}/(\bar{r}_o^2 - 1)$

$\bar{P}_{fi,\text{el}}/(\bar{r}_o^2 - 1)$

$\nu = 0.2$

$\alpha \bar{w}_f = 0.01$

$\alpha \bar{w}_f = 0.02$

$\alpha \bar{w}_f = 0.04$

$\alpha \bar{w}_f = 0.08$
Size effect for $\bar{r}_o = 3.125$

$-\bar{P}_{f_i,\text{max}}/\left(\bar{r}_o^2 - 1\right)$

$\bar{P}_{f_i,\text{pl}}/\left(\bar{r}_o^2 - 1\right)$

$\bar{P}_{f_i,\text{el}}/\left(\bar{r}_o^2 - 1\right)$

$\nu = 0.2$
Size effect for $\bar{r}_o = 14.5$

\[\frac{-P_{f_i, \text{max}}}{(\bar{r}_o^2 - 1)} \]

\[\frac{\bar{P}_{f_i, \text{pl}}}{(\bar{r}_o^2 - 1)} \]

\[\frac{\bar{P}_{f_i, \text{el}}}{(\bar{r}_o^2 - 1)} \]

\[\nu = 0.2 \]
Conclusions

- Model for fluid driven fracture in a thick-walled sphere based on nonlinear fracture mechanics
- Strong effect of Biot-coefficient on strength
- Strong effect of size on strength, which decreases with increasing Biot-coefficient and decreasing thickness of the sphere.