Hydraulic fracture of a permeable thick-walled hollow sphere

Peter Grassl
University of Glasgow, UK

Domenico Gallipoli University of Pau, France

Milan Jirásek Czech Technical University, Czech Republic

ECCM-ECFD 2018, Glasgow

Background

Hydraulic fracture processes in permeable geomaterials (concrete, rock, stiff soils) with stationary fluid flow.

Aim

Study the importance of Biot coefficient for hydraulic fracture processes.

Methodology

Investigate initial fracture (hardening) of permeable thick-walled hollow sphere subjected to inner fluid pressure.

Assumptions and notations

Assumptions and notations

- Spherical symmetry
- Stationary flow
- Constant viscosity and permeability
- Fluid is incompressible
- Small displacements
- Influence of gravity neglected

 P_{fi} tension positive

Fluid driven loading

Fluid driven loading

$$\dot{V} = \dot{V}_{\rm i} + Q \qquad \dot{V}_{\rm i} = \dot{u}_{\rm i} 4\pi r_{\rm i}^2$$

$$q = \frac{Q}{4\pi r^2} \qquad q = \frac{\kappa}{\mu} \frac{dP_{\rm f}}{dr}$$

Pressure distribution

$$\bar{P}_{\rm f} = \bar{P}_{\rm fi} \frac{\bar{r} - \bar{r}_{\rm o}}{\bar{r} \left(1 - \bar{r}_{\rm o}\right)}$$

with dimensionless variables

$$\bar{P}_{\mathrm{fi}} = P_{\mathrm{fi}}/E$$
 $\bar{P}_{\mathrm{f}} = P_{\mathrm{f}}/E$ $\bar{r} = r/r_{\mathrm{i}}$ $\bar{r}_{\mathrm{o}} = r_{\mathrm{o}}/r_{\mathrm{i}}$

Pressure versus radius

Elastic response

Equilibrium condition

$$\frac{d\sigma_{\rm r}}{dr} + 2\frac{\sigma_{\rm r} - \sigma_{\rm t}}{r} = 0$$

Stress definition

$$\sigma_{\rm r} = \sigma_{\rm r}^{\rm m} + bP_{\rm f}$$

$$\sigma_{\rm t} = \sigma_{\rm t}^{\rm m} + bP_{\rm f}$$

Constitutive laws

$$\varepsilon_{\rm r} = \frac{1}{E} \left(\sigma_{\rm r}^{\rm m} - 2\nu \sigma_{\rm t}^{\rm m} \right)$$

$$\varepsilon_{\rm t} = \frac{1}{E} \left((1 - \nu)\sigma_{\rm t}^{\rm m} - \nu \sigma_{\rm r}^{\rm m} \right)$$

$$\sigma_{ heta} = \sigma_{\phi} = \sigma_{
m t}$$

Kinematics

$$\varepsilon_{\rm r} = \frac{du}{dr} \quad \varepsilon_{\rm t} = \frac{u}{r}$$

Timoshenko and Goodier (1970), Coussy (2010)

Dimensionless ODE

$$\frac{d^2\bar{u}}{d\bar{r}^2} + 2\frac{d\bar{u}}{d\bar{r}}\frac{1}{\bar{r}} - 2\frac{\bar{u}}{\bar{r}^2} + b\bar{P}_{fi}\frac{(1+\nu)(1-2\nu)}{(1-\nu)}\frac{\bar{r}_{o}}{1-\bar{r}_{o}}\frac{1}{\bar{r}^2} = 0$$

with dimensionless radial displacement

$$\bar{u} = \frac{u}{r_{\rm i}}$$

Solve analytically and numerically for boundary conditions:

$$ar{\sigma}_{
m r}^{
m m}=(1-b)ar{P}_{
m fi}$$
 at $ar{r}=ar{r}_{
m i}$

$$\bar{\sigma}_{\mathrm{r}}^{\mathrm{m}}=0$$
 at $\bar{r}=\bar{r}_{\mathrm{o}}$

Radial displacement versus radius

Nonlinear fracture response

Nonlinear fracture mechanics

Possible fracture pattern

$$ar{\sigma}_{
m t}^{
m m} = arepsilon_0 {
m exp} \left(-rac{arepsilon_{
m t}^{
m c}}{arepsilon_{
m f}}
ight) \quad {
m with} \quad arepsilon_0 = f_{
m t}/E$$

$$arepsilon_{
m f} = w_{
m f} rac{l_{
m c}}{2S_{
m c}} = w_{
m f} rac{lpha}{r} = ar{w}_{
m f} rac{lpha}{ar{r}} \qquad {
m with} \quad ar{w}_{
m f} = rac{w_{
m f}}{r_{
m i}}$$

Constitutive law for cracking

$$\varepsilon_{\rm r} = \frac{1}{E} \left(\sigma_{\rm r}^{\rm m} - 2\nu \sigma_{\rm t}^{\rm m} \right)$$

$$\varepsilon_{\rm t} = \varepsilon_{\rm t}^{\rm e} + \varepsilon_{\rm t}^{\rm c}$$

$$\varepsilon_{\mathrm{t}}^{\mathrm{e}} = \frac{1}{E} \left((1 - \nu) \, \sigma_{\mathrm{t}}^{\mathrm{m}} - \nu \sigma_{\mathrm{r}}^{\mathrm{m}} \right)$$

Nonlinear ODE

$$\frac{d^2 \bar{u}}{d\bar{r}^2} + 2 \frac{d\bar{u}}{d\bar{r}} \frac{1}{\bar{r}} - 2 \frac{\bar{u}}{\bar{r}^2} - \frac{2\nu}{1 - \nu} \frac{d\varepsilon_{\rm t}^{\rm c}}{d\bar{r}} + \frac{2(1 - 2\nu)}{1 - \nu} \frac{\varepsilon_{\rm t}^{\rm c}}{\bar{r}} + \frac{F_{\rm t}^{\rm c}}{1 - \nu} + \frac{P_{\rm fi}}{E} \frac{(1 + \nu)(1 - 2\nu)}{(1 - \nu)} \frac{\bar{r}_{\rm o}}{1 - \bar{r}_{\rm o}} \frac{1}{\bar{r}^2} = 0$$

Equilibrium:

$$\bar{P}_{\rm fi} = -2 \int_{1}^{\bar{r}_{\rm o}} (\bar{\sigma}_{\rm t}^{\rm m} + b\bar{P}_{\rm f}) \, \bar{r} \, \mathrm{d}\bar{r}$$

Show $\frac{P_{\mathrm{fi}}}{\bar{r}_{\mathrm{o}}^2-1}$ versus \bar{u}_{i}

Pressure versus inner displacement

Tangential effective stress versus radius

Size effect

Size effect

Investigate effect of inner radius $r_{\rm i}$ on strength for constant $\bar{r}_{\rm o}=r_{\rm o}/r_{\rm i}$

Dimensionless input affected by change of r_i :

$$ar{w}_{\mathrm{f}} = rac{w_{\mathrm{f}}}{r_{\mathrm{i}}} \; \mathrm{with} \; w_{\mathrm{f}} = \mathrm{const}$$

Limits

Plastic limit:

$$\frac{r_{\rm i} \to 0}{\frac{\bar{P}_{\rm fi,pl}}{(\bar{r}_{\rm o}^2 - 1)}} = -\frac{\bar{w}_{\rm f}}{1 + b(\bar{r}_{\rm o} - 1)} \to \infty$$

$$\frac{P_{\rm fi,pl}}{(\bar{r}_{\rm o}^2 - 1)} = -\frac{\varepsilon_0}{1 + b(\bar{r}_{\rm o} - 1)}$$

Onset of cracking:

$$r_{\rm i} \to \infty \implies \bar{w}_{\rm f} = \frac{w_{\rm f}}{r_{\rm i}} \to 0$$

$$\frac{\bar{P}_{\rm fi,el}}{\bar{r}_{\rm o}^2 - 1} = -\frac{1}{\bar{r}_{\rm o}^2 - 1} \frac{2\varepsilon_0}{\left(1 - b\frac{1 - 2\nu}{1 - \nu}\right) \frac{\bar{r}_{\rm o}^3 + 2}{\bar{r}_{\rm o}^3 - 1} + b\frac{1}{1 - \nu} \frac{\bar{r}_{\rm o} - 2\nu}{\bar{r}_{\rm o} - 1}}$$

Size effect for $\bar{r}_{\rm o}=7.25$

Conclusions

- Model for fluid driven fracture in a thickwalled sphere based on nonlinear fracture mechanics
- Strong effect of Biot-coefficient on strength
- Strong effect of size on strength, which decreases with increasing Biot-coefficient and decreasing thickness of the sphere.