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Background 

Aim 

Hydraulic fracture: oil and gas extraction, 
failure of flood defense embankments, 
and earth and concrete dams, injection of 
sills and clastic dykes.  

Propose a coupled hydro-mechanical 
lattice approach for modelling fracture in 
saturated porous materials. 
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2D lattice model 



Discretisation 

Bolander and Saito (1998), Bolander and Berton (2004), 
Grassl (2009) 

References: 



Coupled constitutive model 

q =


µ
gradPf

� = �m + b�f

�m = (1� !)D"

Assumptions for transport: 

•  Independent of mechanical response  
•  Fluid is incompressible 

•  Steady state conditions 



Boundaries 

Approach 1  Approach 2  



Elastic Benchmark 



Thick Walled Cylinder 
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Dimensionless 
variables: 
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P̄f = Pf/Ec

P̄fi = Pfi/Ec



Analytical solution 
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References: Grassl et al. (2015), Hill (1950), Shawki and Elwahi (1970) 



Lattice analysis 
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Boundary Approach 1 

Mechanical Transport 
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Displacement 
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Fracture analysis 



Fracture analysis 

"0 = 0.0001

w̄f = wf/ri = 0.00625c = 20

q = 2Input: 

•  Fracture process 

•  Size effect 

Boundary approach 2 



Fracture process 
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Fracture process 
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Fracture process 
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Fracture process 
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Fracture process 
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Fracture process 
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Fracture process 
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Size effect 

Plastic limit 

Onset of cracking 
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Size effect 
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Conclusions 

•  Good agreement with the analytical 
solution for varying Biot’s coefficient. 

•  Hydraulic fracturing is described mesh-size 
independently. 

Lattice analysis of the hydro-mechanical 
response of a thick-walled cylinder: 

•  Thick walled cylinder exhibits strong size 
effect which decreases with an increase in 
Biot’s coefficient. 



3D extension 

Shrinkage 
induced cracking 
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Scalar damage model 

f (",�) = ⇥eq (")� �

f  0, �̇ � 0, �̇f = 0

Stress-strain law 

Loading-unloading conditions 

Loading function 

Damage function 
⇥ = gd (�)

�m = (1� !)De"



Equivalent strain definition 
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Strength envelope  

fq = qft

fc = cft

ft = E�0



Damage function 

Increment of dissipated 
energy: 
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Mesh dependence 
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Mesh dependence 
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