3D network modelling of the fracture process zone in fibre-reinforced geomaterials

Peter Grassl University of Glasgow, UK

and

Adrien Antonelli Ecole Normale Supérieure Paris-Saclay

Background

Ref: Grassl and Jirásek (2010), Grassl et al. (2012), Grégoire et al. (2015), Xenos et al. (2015)

Background

Aim

Improve the understanding of fracture processes at the meso-scale of fibre reinforced materials

Approach

Use network model for periodic cells subjected to direct tension

Outline

Method

Meso-scale generation

Network model

Constitutive model

Analyses

Results

Conclusions

Aggregates: polydispersed ellipsoids

Fibres: monodispersed line segments

Periodic random sequential addition approach Algebraic overlap check:

Examples

Aggregates

Fibres

Aggregates

+ Fibres

Network model

Network model

Matrix, Aggregate and ITZ

Network model

Links between fibres and matrix

Periodic extension

Periodic node position

$$\mathbf{x}' = \mathbf{M}\mathbf{x}$$

DOFs of periodic node:

$$\mathbf{u}' = \mathbf{T} egin{pmatrix} \mathbf{u} \ \mathbf{E} \end{pmatrix}$$

E Average strain applied to cell

Athanasiadis et al. (2017), Grassl and Jirásek (2010)

Example of periodic network

Network elements

Beam elements with links

Material models

Material models

Matrix and ITZ: Scalar damage

$$\boldsymbol{\sigma} = (1 - \omega) \mathbf{D}_{\mathrm{e}} \boldsymbol{\varepsilon}$$

$$\dot{d}=\dot{\omega}rac{1}{2}oldsymbol{arepsilon}:\mathbf{D}_{\mathrm{e}}:oldsymbol{arepsilon}$$

Aggregates: Elastic

$$oldsymbol{\sigma} = \mathbf{D}_{\mathrm{e}} oldsymbol{arepsilon}$$

Material models

Fibres: elastic

$$\mathbf{F} = \mathbf{K}_{\mathrm{e}}\left(E_{\mathrm{f}}, d_{\mathrm{f}}\right)\mathbf{u}$$

Links: Elasto-plastic in tangential direction

Analyses

Analyses: Direct tension

Average strain and stress control:

$$E_{\rm v} > 0$$

$$S_{\mathbf{x}} = S_{\mathbf{z}} = S_{\mathbf{y}\mathbf{x}} = S_{\mathbf{z}\mathbf{x}} = S_{\mathbf{y}\mathbf{z}} = 0$$

Analyses: Direct tension Four groups of analyses

10 analyses with random meso-structures and networks for each group

Analyses: Input

Meso-scale generation

Aggregates: $ho_{
m a}=80~\%$ $d_{
m min}=8~{
m mm}$ $d_{
m max}=16~{
m mm}$

Fibres: $d_{\rm f}=0.75~{\rm mm}$ $\rho_{\rm f}=1~\%$ $l_{\rm f}=3~{\rm cm}$

Discretisation: a = 10 cm $l_{\min} = 3 \text{ mm}$

Material parameters

Matrix: $f_{\rm t}=3$ MPa E=30 GPa $G_{\rm F}=120$ J/m²

Aggregate: E = 90 GPa

ITZ: $E=45~\mathrm{GPa}$ $f_\mathrm{t}=1.5~\mathrm{MPa}$ $G_\mathrm{F}=60~\mathrm{J/m^2}$

Fibres+Links: $E_{\rm f}=200~{\rm GPa}~\tau=3~{\rm MPa}~E_{\rm b}=3000~{\rm GPa}$

Results

Crack patterns in matrix and ITZ

Stage I

Roughness evaluation

Roughness evaluation

$$\bar{z} = \sum_{i=1}^{N} w_i z_i$$

$$w_i = \frac{A_i \Delta d_i}{\sum\limits_{k=1}^{N} A_k \Delta d_k}$$

$$\Delta h = \sqrt{\sum_{i=1}^{N} w_i (z_i - \bar{z})^2}$$

Results: Roughness

Results: Roughness

Results: Roughness

The end

Backup slides

Analytical expressions

At peak:

$$\sigma_{\rm cc} = \sigma_{\rm mu} \left(1 - \rho_{\rm f} \right) + \alpha_1 \alpha_2 \tau_0 \rho_{\rm f} l_{\rm f} / d_{\rm f}$$

After cracking:

$$\sigma_{\rm pc} = 4\lambda_1 \lambda_2 \tau_0 \rho_{\rm f} l_{\rm f} / d_{\rm f}$$

 σ_{mu} Matrix strength

 α_1 Fibre orientation

 α_2 Fraction of bond strength mobilised

 λ_1 Average pullout length

 λ_2 Postcracking orientation efficiency

Energy

Energy Components

