

Concrete Mechanics for Performance Based Design

Improving understanding

Structural modelling

http://petergrassl.com

Why Concrete?

Most used construction material in the world

7% of anthropogenic CO2 emissions (mainly from cement production)

Use of concrete predicted to double in the middle of century

230 billion cubic metres of new construction by 2060 (City of size of Paris every week)

What can we do?

Models for predicting response of concrete

New materials with improved performance

Techniques for retrofitting and repairing structures

Improving understanding of concrete behaviour

PhD students:

Xiaowei Liu: Dynamic loading

Gumaa Abdelrhim: Structural collapse

Ifiok Ekop: Strengthening with FRP

Chao Zhou: Fibre reinforced composites

Ismail Aldellaa: Corrosion induced cracking in reinforced concrete

Corrosion induced cracking

Main references:

- I. Aldellaa, P. Havlásek, M. Jirásek, P. Grassl. Engineering Fracture Mechanics, April 2022, Volume 264, 108310.
- I. Aldellaa and P. Grassl, 2023, In preparation.

Background

Corrosion rate: $x_{\rm cor}/t \propto i_{\rm cor}$

Background

Main causes:

Carbonation
Ingress of chloride irons

Often $i_{\rm cor} < 10 \ \mu {\rm A/cm^2}$

Cracking after years!

Background

Accelerated process in the lab:

$$i_{\rm cor} > 100 \ \mu {\rm A/cm^2}$$

Cracking after days!

How to link lab results to field applications?

Aim

Understand long-term effects involved in corrosion induced cracking.

Provide suggestions how to incorporate these effects in predictive modelling approaches.

Methodology

Use thick-walled cylinder models supported by lattice analyses and experiments.

Faraday's laws of electrolysis

$$rac{x_{
m cor}}{t} = rac{M}{n
ho F} i_{
m cor}$$
 $M = 55.9 \ {
m g/mol}$ $n = 2$

$$\frac{1}{n\rho F} \frac{1}{n\rho F} = \frac{1}{$$

$$\frac{x_{\text{cor}}}{t} = 0.032i_{\text{cor}}$$
 $\rho = 7.85 \text{ g/cm}^3$ $E = 0.0485 \text{ C/mol}$

$$\frac{-\cos}{t} = 0.032i_{cor}$$

$$F = 96485 \text{ C/mol}$$

$$[\mu\text{m/day}] \quad [\mu\text{A/cm}^2]$$

$$ho = 7.85 \text{ g/cm}^{\circ}$$
 $.032i_{\mathrm{cor}}$
 $F = 96485 \text{ C/n}$
 $[\mu\text{A/cm}^2]$

Thick-walled cylinder model

Thick-walled cylinder idealisation

Thick-walled cylinder

Thick-walled cylinder mechanics

Equilibrium

$$\frac{\mathrm{d}\sigma_{\mathrm{r}}}{\mathrm{d}r}r + \sigma_{\mathrm{r}} - \sigma_{\theta} = 0$$

Compatibility

$$\varepsilon_{\mathrm{r}} = \frac{\mathrm{d}u}{\mathrm{d}r} \quad \text{and} \quad \varepsilon_{\theta} = \frac{u}{r}$$

Version 1: Elastic thick-walled cylinder + plastic limit for pressure

Elastic thick-walled cylinder

Constitutive model

$$\begin{cases} \varepsilon_{\mathbf{r}} \\ \varepsilon_{\theta} \end{cases} = \frac{1}{E} \begin{pmatrix} 1 & -\nu \\ -\nu & 1 \end{pmatrix} \begin{cases} \sigma_{\mathbf{r}} \\ \sigma_{\theta} \end{cases}$$

ODE of radial displacement

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}u}{\mathrm{d}r} - \frac{u}{r^2} = 0$$

Boundary conditions

$$\sigma_{
m r} = -P \ {
m at} \ r = r_{
m i}$$
 $\sigma_{
m r} = 0 \ {
m at} \ r = r_{
m o}$

Elastic thick-walled cylinder mechanics

$$u(r) = \frac{P}{E} \frac{(r^2 + r_o^2) r_i^2}{(r_o^2 - r_i^2) r}$$

$$u_{\rm i} = \frac{P}{E} \frac{\left(r_{\rm i}^2 + r_{\rm o}^2\right) r_{\rm i}}{r_{\rm o}^2 - r_{\rm i}^2}$$

with
$$u_i = u(r_i)$$

$$P^{\text{crit}} = f_{\text{t}} \frac{r_{\text{o}} - r_{\text{i}}}{r_{\text{i}}}$$

Combine solution for radial displacement with plastic limit

$$u_{\rm i}^{\rm crit} = \frac{f_{\rm t}}{EC} \frac{r_{\rm o} - r_{\rm i}}{r_{\rm i}} \qquad C = \frac{r_{\rm o}^2 - r_{\rm i}^2}{((1 - \nu)r_{\rm i}^2 + (1 + \nu)r_{\rm o}^2) \, r_{\rm i}}$$

Link to corrosion penetration

$$x_{\text{cor}}^{\text{crit}} = \frac{u_{\text{i}}^{\text{crit}}}{(\alpha - 1)} = \frac{f_{\text{t}}}{(\alpha - 1)EC} \frac{r_{\text{o}} - r_{\text{i}}}{r_{\text{i}}}$$

and time
$$\Delta t^{\rm crit} = \frac{u_{\rm i}^{\rm crit}}{0.0315 \left(\alpha - 1\right) i_{\rm cor}} = \frac{f_{\rm t}}{0.0315 \left(\alpha - 1\right) i_{\rm cor} EC} \frac{r_{\rm o} - r_{\rm i}}{r_{\rm i}}$$

Elastic cylinder with plastic limit

Version 2: Cracked cylinder

Thick-wall cylinder mechanics

Cracked constitutive model

$$\begin{cases} \varepsilon_{\mathbf{r}} \\ \varepsilon_{\theta} \end{cases} = \frac{1}{E} \begin{pmatrix} 1 & -\nu \\ -\nu & 1 \end{pmatrix} \begin{cases} \sigma_{\mathbf{r}} \\ \sigma_{\theta} \end{cases} + \begin{cases} 0 \\ \varepsilon_{\theta}^{\mathrm{cr}} \end{cases}$$

Cohesive law

$$\sigma_{\theta} = f\left(\varepsilon_{\theta}^{\rm cr}, r\right) \equiv f_{\rm t} \exp\left(-\frac{\varepsilon_{\theta}^{\rm cr}}{\varepsilon_{\rm f}}\right)$$

$$\varepsilon_{\rm f} = n_{\rm c} G_{\rm f}/(f_{\rm t} 2\pi r)$$

Set stresses in ODE

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}u}{\mathrm{d}r} - \frac{1}{r^2} u + \frac{1}{r} (1 - \nu) \varepsilon_{\theta}^{\mathrm{cr}} - \nu \frac{\mathrm{d}\varepsilon_{\theta}^{\mathrm{cr}}}{\mathrm{d}r} = 0$$

Use
$$\frac{d\sigma_{\theta}}{dr} = \frac{df\left(\varepsilon_{\theta}^{\mathrm{cr}}, r\right)}{dr}$$
 to solve for $\frac{d\varepsilon_{\theta}^{\mathrm{cr}}}{dr}$

$$\frac{\mathrm{d}\varepsilon_{\theta}^{\mathrm{cr}}}{\mathrm{d}r} = \frac{1}{A} \left(\frac{\mathrm{d}u}{\mathrm{d}r} \frac{1}{r} - \frac{u}{r^2} + \nu \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} \right)$$

with

$$A = 1 - \frac{f_{\rm t}}{E\varepsilon_{\rm f}} \left(1 - \nu^2 \right) \exp \left(-\frac{\varepsilon_{\theta}^{\rm cr}}{\varepsilon_{\rm f}} \right)$$

Nonlinear ODE

$$\frac{d^{2}u}{dr^{2}} + \frac{1}{r}\frac{du}{dr}\frac{A - \nu}{A - \nu^{2}} - \frac{1}{r^{2}}u\frac{A - \nu}{A - \nu^{2}} + \frac{1}{r}\frac{A(1 - \nu)}{A - \nu^{2}}\varepsilon_{\theta}^{cr} = 0$$

$$A = 1 - \frac{f_{\rm t}}{E\varepsilon_{\rm f}} \left(1 - \nu^2 \right) \exp \left(-\frac{\varepsilon_{\theta}^{\rm cr}}{\varepsilon_{\rm f}} \right)$$

Solve with bvp4c in MATLAB

Incremental analysis Controlled by hicrearin Moor

Boundary conditions

$$u(r_{\rm i}) = u_{\rm cor}$$

$$\sigma_{\rm r}(r_{\rm o}) = 0$$

Cracked cylinder

Version 3: Time dependent response

Time dependent response

$$\begin{cases} \varepsilon_{\mathbf{r}} \\ \varepsilon_{\theta} \end{cases} = \frac{1}{E''} \begin{pmatrix} 1 & -\nu \\ -\nu & 1 \end{pmatrix} \begin{cases} \sigma_{\mathbf{r}} \\ \sigma_{\theta} \end{cases} + \begin{cases} 0 \\ \varepsilon_{\theta}^{\mathrm{cr}} \end{cases}$$

Modified AAEM

$$E^{''}\left(t,t_{0}\right) = \frac{1-R\left(t,t_{0}\right)J\left(t_{0}^{*},t_{0}\right)}{J\left(t,t_{0}\right)-J\left(t_{0}^{*},t_{0}\right)} \qquad \underbrace{t_{0} \text{ start of loading}}_{t_{0}}$$

$$t_{0}^{*} = \begin{cases} 0.9t_{0}+0.1t & \text{if } t_{0} < t < t_{0}+10\Delta t_{\mathrm{s}} \\ t_{0}+\Delta t_{\mathrm{s}} & \text{if } t_{0}+10\Delta t_{\mathrm{s}} \leq t \end{cases}$$

Ref: Bažant and Jirásek (2018)

$$R(t, t_0) = \frac{1}{J(t, t_0)} \left[1 + \frac{c_1(t_0)J(t, t_0)}{10J(t, t - \Delta t)} \left(\frac{J(t_m, t_0)}{J(t, t_m)} - 1 \right) \right]^{-10}$$

$$c_1(t_0) = 0.08 + 0.0119 \ln t_0$$
 $\Delta t = 1 \text{ day}$ $\Delta t_s = 0.01 \text{ days}$

$$J(t,t_0) = q_1 + q_2 Q(t,t_0) + q_3 \ln\left[1 + (t-t_0)^n\right] + q_4 \ln\left(\frac{t}{t_0}\right)$$
Parameters based on fc, w, c, a

Maturity according to Model Code 2010

$$f_c(t) = f_c^{28} \exp\left(s \left[1 - \sqrt{28/t}\right]\right)$$

Ref: Bažant and Jirásek (2018)

Effect of maturity on tensile strength

Effect of creep and maturity on effective modulus

Scenarios for investigating effect of creep

 $t_0 = 28 \text{ days}$

 $i_{\rm cor} = 1 \ \mu A/{\rm cm}^2$

 $t_0 = 10000 \text{ days}$

 $i_{\rm cor} = 100 \ \mu {\rm A/cm^2}$

 $t_0 = 10000 \text{ days}$

 $i_{\rm cor} = 1 \ \mu A/{\rm cm}^2$

Young concrete Scenario 1 $t_0 = 28 \text{ days}$

Accelerated corrosion $i_{\rm cor} = 100 \ \mu {\rm A/cm^2}$

Young concrete

Slow corrosion

Old concrete

Old concrete

Slow corrosion

Accelerated corrosion

not realistic

Scenario 2

Scenario 3

Scenario 4

Scenario 1: Young concrete + accelerated corrosion

Scenario 2: Young concrete + slow corrosion

Scenario 3: Old concrete + accelerated corrosion

Scenario 3: Old concrete + slow corrosion

Lattice model and experiments

Lattice discretisation

Constrained random points

Tessellations

Lattice element

Lattice constitutive model

$$\boldsymbol{\sigma} = (1 - \omega) \, \mathbf{D}_{\mathrm{e}} \left(\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{\mathrm{p}} \right) = (1 - \omega) \bar{\boldsymbol{\sigma}}$$

Ref: Grassl and Bolander (2016), Grassl (2009)

Experiments - Geometry

Experiments - Setup

Crack patterns

Conclusions

Inclusion of cracking significantly affects critical corrosion penetration.

Creep has moderate effect on accelerated corrosion for young concrete.

Very small effect of creep on slow corrosion for old concrete.

Experiments indicate that cracking, creep and maturity alone is not enough to predict corrosion induced cracking. Transport of corrosion products required?

