On the influence of fibres on tensile laps of reinforcement loops

Peter Grassl
School of Engineering
University of Glasgow, UK

Background: Structural concrete

Inspired from Allen and Tildesley (2017)

FE approach: Mesh Stell Coucret

Constitutive model for concrete

plasticity

$$\sigma = (1 - \omega) \mathbf{D}_{e} : \boldsymbol{\varepsilon} \quad \sigma = \mathbf{D}_{e} : (\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_{p})$$

$$oldsymbol{\sigma} = \mathbf{D}_{\mathrm{e}} : (oldsymbol{arepsilon} - oldsymbol{arepsilon}_{\mathrm{p}})$$

damage-plasticity

$$\boldsymbol{\sigma} = (1 - \omega_{\rm t})\bar{\boldsymbol{\sigma}}_{\rm t} + (1 - \omega_{\rm c})\bar{\boldsymbol{\sigma}}_{\rm c}$$

$$\bar{\boldsymbol{\sigma}} = \mathbf{D}_{\mathrm{e}} : (\boldsymbol{\varepsilon} - \boldsymbol{arepsilon}_{\mathrm{p}}) = \bar{\boldsymbol{\sigma}}_{\mathrm{t}} + \bar{\boldsymbol{\sigma}}_{\mathrm{c}}$$

Ref: Grassl et al. (2013)

Constitutive response for concrete

Crack-band approach

Constitutive models

Steel

Geometry and setup

Plain and fibre concrete

Load-displacement

No fibres

Comparison with experiments

R12

R14

Ref: Grassl (1999)

Fibres

Discussion

FE-approach is capable of producing spalling failure in loop splices with plain concrete.

Adding fibres prevents sudden spalling failure mode.

Next steps

Model: Should reinforcement be modeled using solid elements? How strongly does it affect the results?

Design equations: Use detailed 3D results to review existing design equations for reinforcement arrangements.